www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Separabilität von Folgenräumen
Separabilität von Folgenräumen < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Separabilität von Folgenräumen: l-unendlich nicht separabel?
Status: (Frage) beantwortet Status 
Datum: 13:26 Mi 26.12.2007
Autor: Tomatito80

Aufgabe
Wieso ist der Raum [mm] l^{\infty} [/mm] nicht separabel? Wenn ich strikt nach dem Satz vorgehe, dann wähle ich mir als totale Folge [mm] x_{i}:= e_{i}:= [/mm] (0,0,0,...,0,1,0,0,...) mit der 1 an der i. Stelle der Folge und sonst überall Nullen. Jetzt sollte ich doch jede Folge aus [mm] l^{\infty} [/mm] mit einer Linearkombination der [mm] x_{i} [/mm] darstellen können, d.h. [mm] span\{x_{i}, i \in \IN\} [/mm] liegt dich in [mm] l^{\infty} [/mm]

Hallo Zusammen!

Ich lerne gerade auf meine Prüfung in Funktionalanalysis und dabei ist mir folgendes Problem untergekommen:

Vorgeschichte:
Es gibt einen Satz der besagt, dass ein normierter Raum genau dann separabel ist, wenn es eine totale Folge in X gibt.

Anm.: Eine totale Folge in X ist eine Folge [mm] x_{n} \subset [/mm] X (X ist ein normierter Raum), so dass [mm] span\{x_{n}, n \in \IN\} [/mm] dicht liegt in X

Meine eigentliche Frage lautet jetzt:

Wieso ist der Raum [mm] l^{\infty} [/mm] nicht separabel? Wenn ich strikt nach dem Satz vorgehe, dann wähle ich mir als totale Folge [mm] x_{i}:= e_{i}:= [/mm] (0,0,0,...,0,1,0,0,...) mit der 1 an der i. Stelle der Folge und sonst überall Nullen. Jetzt sollte ich doch jede Folge aus [mm] l^{\infty} [/mm] mit einer Linearkombination der [mm] x_{i} [/mm] darstellen können, d.h. [mm] span\{x_{i}, i \in \IN\} [/mm] liegt dich in [mm] l^{\infty} [/mm]

Wo liegt mein Denkfehler?

Ich danke euch schon mal für eure Bemühungen,

Viele Grüsse,
Thomas



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Separabilität von Folgenräumen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:39 Mi 26.12.2007
Autor: Somebody


> Wieso ist der Raum [mm]l^{\infty}[/mm] nicht separabel? Wenn ich
> strikt nach dem Satz vorgehe, dann wähle ich mir als totale
> Folge [mm]x_{i}:= e_{i}:=[/mm] (0,0,0,...,0,1,0,0,...) mit der 1 an
> der i. Stelle der Folge und sonst überall Nullen. Jetzt
> sollte ich doch jede Folge aus [mm]l^{\infty}[/mm] mit einer
> Linearkombination der [mm]x_{i}[/mm] darstellen können, d.h.
> [mm]span\{x_{i}, i \in \IN\}[/mm] liegt dich in [mm]l^{\infty}[/mm]
>  Hallo Zusammen!
>  
> Ich lerne gerade auf meine Prüfung in Funktionalanalysis
> und dabei ist mir folgendes Problem untergekommen:
>  
> Vorgeschichte:
>  Es gibt einen Satz der besagt, dass ein normierter Raum
> genau dann separabel ist, wenn es eine totale Folge in X
> gibt.
>  
> Anm.: Eine totale Folge in X ist eine Folge [mm]x_{n} \subset[/mm] X
> (X ist ein normierter Raum), so dass [mm]span\{x_{n}, n \in \IN\}[/mm]
> dicht liegt in X
>  
> Meine eigentliche Frage lautet jetzt:
>  
> Wieso ist der Raum [mm]l^{\infty}[/mm] nicht separabel? Wenn ich
> strikt nach dem Satz vorgehe, dann wähle ich mir als totale
> Folge [mm]x_{i}:= e_{i}:=[/mm] (0,0,0,...,0,1,0,0,...) mit der 1 an
> der i. Stelle der Folge und sonst überall Nullen. Jetzt
> sollte ich doch jede Folge aus [mm]l^{\infty}[/mm] mit einer
> Linearkombination der [mm]x_{i}[/mm] darstellen können, d.h.
> [mm]span\{x_{i}, i \in \IN\}[/mm] liegt dich in [mm]l^{\infty}[/mm]
>  
> Wo liegt mein Denkfehler?

Eine Linearkombination der [mm] $x_i$ [/mm] besitzt nur endlich viele Koordinaten [mm] $\neq [/mm] 0$. Sie hat also z.B. von [mm] $(1,\ldots)\in \ell^\infty$ [/mm] stets Abstand [mm] $\geq [/mm] 1$.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de