www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Separable Erw., char K = p>0
Separable Erw., char K = p>0 < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Separable Erw., char K = p>0: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:47 Di 08.03.2011
Autor: Lippel

Aufgabe
Sei [mm] $L/K\:$ [/mm] eine Körpererweiterung in Charakteristik $p>0, [mm] \;\alpha \in [/mm] L$ algebraisch über [mm] $K\:$. [/mm] Zeigen Sie:
[mm] $\alpha$ [/mm] separabel über $K [mm] \gdw K(\alpha)=K(\alpha^p)$ [/mm]

Hallo,

ich bin mir bei der Rückrichtung des Beweises sehr unsicher.

[mm] "$\Rightarrow$" [/mm]
Zunächst gilt [mm] $K(\alpha^p) \subset K(\alpha)$, [/mm] wir betrachten die Erweiterung [mm] $K(\alpha)/K(\alpha^p)$. [/mm] Es ist [mm] $K(\alpha)/K$ [/mm] separabel, da [mm] $\alpha$ [/mm] separabel ist. Aufgrund der Transitivität der Separabilität ist dann auch [mm] $K(\alpha)/K(\alpha^p)$ [/mm] separabel, da [mm] $K(\alpha^p)$ [/mm] Zwischenkörper der Erweiterung [mm] $K(\alpha)/K$ [/mm] ist.
Es gilt [mm] $f:=X^p-\alpha^p \in K(\alpha^p)[X]$ [/mm] annuliert [mm] $\alpha \Rightarrow min_{K(\alpha^p)}(\alpha) \: [/mm] | [mm] \: [/mm] f$. Da wie oben gezeigt [mm] $K(\alpha)/K(\alpha^p)$ [/mm] separabel ist, hat [mm] $min_{K(\alpha^p)}(\alpha)$ [/mm] nur einfache Nullstellen in einem alg. Abschluss [mm] $\overline{K}$ [/mm] von [mm] $K(\alpha)$. [/mm] Es ist aber [mm] $f=(X-\alpha)^p$ [/mm] in [mm] $K(\alpha)[X] \Rightarrow min_{K(\alpha^p)}(\alpha) [/mm] = [mm] X-\alpha \Rightarrow \alpha \in \K(\alpha^p)$ [/mm] und somit [mm] $K(\alpha)=K(\alpha^p)$ [/mm]

[mm] "$\Leftarrow$" [/mm]
Ich weiß: wenn [mm] $f:=min_K(\alpha)$, [/mm] und wir nehmen an, f habe mehrfache Nullstellen, dann hat jede Nullstelle von f die Vielfachheit [mm] $p^r, [/mm] r [mm] \in \IN$ [/mm] und es gibt ein $g [mm] \in [/mm] K[X]: [mm] g(X^{p^r})=f(X)$. [/mm] Damit gibt es insbesondere ein $h [mm] \in [/mm] K[X]: [mm] h(X^p)=f(X) \Rightarrow h(\alpha^p) [/mm] = [mm] f(\alpha) [/mm] = 0 [mm] \Rightarrow min_K(\alpha^p) \: [/mm] | [mm] \: [/mm] h [mm] \Rightarrow [K(\alpha^p):K] \leq \frac{[K(\alpha):K]}{p}$ [/mm] im Widerspruch zu [mm] $K(\alpha)=K(\alpha^p)$. [/mm]
Stimmt das? Irgendwie kommt es mir komisch vor.

LG Lippel

        
Bezug
Separable Erw., char K = p>0: Antwort
Status: (Antwort) fertig Status 
Datum: 00:51 Di 08.03.2011
Autor: felixf

Moin!

> Sei [mm]L/K\:[/mm] eine Körpererweiterung in Charakteristik [mm]p>0, \;\alpha \in L[/mm]
> algebraisch über [mm]K\:[/mm]. Zeigen Sie:
>  [mm]\alpha[/mm] separabel über [mm]K \gdw K(\alpha)=K(\alpha^p)[/mm]
>  
> ich bin mir bei der Rückrichtung des Beweises sehr
> unsicher.
>  
> "[mm]\Rightarrow[/mm]"
>  Zunächst gilt [mm]K(\alpha^p) \subset K(\alpha)[/mm], wir
> betrachten die Erweiterung [mm]K(\alpha)/K(\alpha^p)[/mm]. Es ist
> [mm]K(\alpha)/K[/mm] separabel, da [mm]\alpha[/mm] separabel ist. Aufgrund
> der Transitivität der Separabilität ist dann auch
> [mm]K(\alpha)/K(\alpha^p)[/mm] separabel, da [mm]K(\alpha^p)[/mm]
> Zwischenkörper der Erweiterung [mm]K(\alpha)/K[/mm] ist.
>  Es gilt [mm]f:=X^p-\alpha^p \in K(\alpha^p)[X][/mm] annuliert
> [mm]\alpha \Rightarrow min_{K(\alpha^p)}(\alpha) \: | \: f[/mm]. Da
> wie oben gezeigt [mm]K(\alpha)/K(\alpha^p)[/mm] separabel ist, hat
> [mm]min_{K(\alpha^p)}(\alpha)[/mm] nur einfache Nullstellen in einem
> alg. Abschluss [mm]\overline{K}[/mm] von [mm]K(\alpha)[/mm]. Es ist aber
> [mm]f=(X-\alpha)^p[/mm] in [mm]K(\alpha)[X] \Rightarrow min_{K(\alpha^p)}(\alpha) = X-\alpha \Rightarrow \alpha \in \K(\alpha^p)[/mm]
> und somit [mm]K(\alpha)=K(\alpha^p)[/mm]

[ok]

> "[mm]\Leftarrow[/mm]"
>  Ich weiß: wenn [mm]f:=min_K(\alpha)[/mm], und wir nehmen an, f
> habe mehrfache Nullstellen, dann hat jede Nullstelle von f
> die Vielfachheit [mm]p^r, r \in \IN[/mm] und es gibt ein [mm]g \in K[X]: g(X^{p^r})=f(X)[/mm].
> Damit gibt es insbesondere ein [mm]h \in K[X]: h(X^p)=f(X) \Rightarrow h(\alpha^p) = f(\alpha) = 0 \Rightarrow min_K(\alpha^p) \: | \: h \Rightarrow [K(\alpha^p):K] \leq \frac{[K(\alpha):K]}{p}[/mm]
> im Widerspruch zu [mm]K(\alpha)=K(\alpha^p)[/mm].
>  Stimmt das? Irgendwie kommt es mir komisch vor.

Doch, es stimmt.

LG Felix


Bezug
                
Bezug
Separable Erw., char K = p>0: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:52 Di 08.03.2011
Autor: Lippel

Wunderbar, tausend Dank!!

LG Lippel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de