Separable Erw., char K = p>0 < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 00:47 Di 08.03.2011 | Autor: | Lippel |
Aufgabe | Sei [mm] $L/K\:$ [/mm] eine Körpererweiterung in Charakteristik $p>0, [mm] \;\alpha \in [/mm] L$ algebraisch über [mm] $K\:$. [/mm] Zeigen Sie:
[mm] $\alpha$ [/mm] separabel über $K [mm] \gdw K(\alpha)=K(\alpha^p)$ [/mm] |
Hallo,
ich bin mir bei der Rückrichtung des Beweises sehr unsicher.
[mm] "$\Rightarrow$"
[/mm]
Zunächst gilt [mm] $K(\alpha^p) \subset K(\alpha)$, [/mm] wir betrachten die Erweiterung [mm] $K(\alpha)/K(\alpha^p)$. [/mm] Es ist [mm] $K(\alpha)/K$ [/mm] separabel, da [mm] $\alpha$ [/mm] separabel ist. Aufgrund der Transitivität der Separabilität ist dann auch [mm] $K(\alpha)/K(\alpha^p)$ [/mm] separabel, da [mm] $K(\alpha^p)$ [/mm] Zwischenkörper der Erweiterung [mm] $K(\alpha)/K$ [/mm] ist.
Es gilt [mm] $f:=X^p-\alpha^p \in K(\alpha^p)[X]$ [/mm] annuliert [mm] $\alpha \Rightarrow min_{K(\alpha^p)}(\alpha) \: [/mm] | [mm] \: [/mm] f$. Da wie oben gezeigt [mm] $K(\alpha)/K(\alpha^p)$ [/mm] separabel ist, hat [mm] $min_{K(\alpha^p)}(\alpha)$ [/mm] nur einfache Nullstellen in einem alg. Abschluss [mm] $\overline{K}$ [/mm] von [mm] $K(\alpha)$. [/mm] Es ist aber [mm] $f=(X-\alpha)^p$ [/mm] in [mm] $K(\alpha)[X] \Rightarrow min_{K(\alpha^p)}(\alpha) [/mm] = [mm] X-\alpha \Rightarrow \alpha \in \K(\alpha^p)$ [/mm] und somit [mm] $K(\alpha)=K(\alpha^p)$
[/mm]
[mm] "$\Leftarrow$"
[/mm]
Ich weiß: wenn [mm] $f:=min_K(\alpha)$, [/mm] und wir nehmen an, f habe mehrfache Nullstellen, dann hat jede Nullstelle von f die Vielfachheit [mm] $p^r, [/mm] r [mm] \in \IN$ [/mm] und es gibt ein $g [mm] \in [/mm] K[X]: [mm] g(X^{p^r})=f(X)$. [/mm] Damit gibt es insbesondere ein $h [mm] \in [/mm] K[X]: [mm] h(X^p)=f(X) \Rightarrow h(\alpha^p) [/mm] = [mm] f(\alpha) [/mm] = 0 [mm] \Rightarrow min_K(\alpha^p) \: [/mm] | [mm] \: [/mm] h [mm] \Rightarrow [K(\alpha^p):K] \leq \frac{[K(\alpha):K]}{p}$ [/mm] im Widerspruch zu [mm] $K(\alpha)=K(\alpha^p)$.
[/mm]
Stimmt das? Irgendwie kommt es mir komisch vor.
LG Lippel
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:51 Di 08.03.2011 | Autor: | felixf |
Moin!
> Sei [mm]L/K\:[/mm] eine Körpererweiterung in Charakteristik [mm]p>0, \;\alpha \in L[/mm]
> algebraisch über [mm]K\:[/mm]. Zeigen Sie:
> [mm]\alpha[/mm] separabel über [mm]K \gdw K(\alpha)=K(\alpha^p)[/mm]
>
> ich bin mir bei der Rückrichtung des Beweises sehr
> unsicher.
>
> "[mm]\Rightarrow[/mm]"
> Zunächst gilt [mm]K(\alpha^p) \subset K(\alpha)[/mm], wir
> betrachten die Erweiterung [mm]K(\alpha)/K(\alpha^p)[/mm]. Es ist
> [mm]K(\alpha)/K[/mm] separabel, da [mm]\alpha[/mm] separabel ist. Aufgrund
> der Transitivität der Separabilität ist dann auch
> [mm]K(\alpha)/K(\alpha^p)[/mm] separabel, da [mm]K(\alpha^p)[/mm]
> Zwischenkörper der Erweiterung [mm]K(\alpha)/K[/mm] ist.
> Es gilt [mm]f:=X^p-\alpha^p \in K(\alpha^p)[X][/mm] annuliert
> [mm]\alpha \Rightarrow min_{K(\alpha^p)}(\alpha) \: | \: f[/mm]. Da
> wie oben gezeigt [mm]K(\alpha)/K(\alpha^p)[/mm] separabel ist, hat
> [mm]min_{K(\alpha^p)}(\alpha)[/mm] nur einfache Nullstellen in einem
> alg. Abschluss [mm]\overline{K}[/mm] von [mm]K(\alpha)[/mm]. Es ist aber
> [mm]f=(X-\alpha)^p[/mm] in [mm]K(\alpha)[X] \Rightarrow min_{K(\alpha^p)}(\alpha) = X-\alpha \Rightarrow \alpha \in \K(\alpha^p)[/mm]
> und somit [mm]K(\alpha)=K(\alpha^p)[/mm]
> "[mm]\Leftarrow[/mm]"
> Ich weiß: wenn [mm]f:=min_K(\alpha)[/mm], und wir nehmen an, f
> habe mehrfache Nullstellen, dann hat jede Nullstelle von f
> die Vielfachheit [mm]p^r, r \in \IN[/mm] und es gibt ein [mm]g \in K[X]: g(X^{p^r})=f(X)[/mm].
> Damit gibt es insbesondere ein [mm]h \in K[X]: h(X^p)=f(X) \Rightarrow h(\alpha^p) = f(\alpha) = 0 \Rightarrow min_K(\alpha^p) \: | \: h \Rightarrow [K(\alpha^p):K] \leq \frac{[K(\alpha):K]}{p}[/mm]
> im Widerspruch zu [mm]K(\alpha)=K(\alpha^p)[/mm].
> Stimmt das? Irgendwie kommt es mir komisch vor.
Doch, es stimmt.
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:52 Di 08.03.2011 | Autor: | Lippel |
Wunderbar, tausend Dank!!
LG Lippel
|
|
|
|