www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - Separationsansatz
Separationsansatz < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Separationsansatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:43 So 10.06.2012
Autor: Schluchti

Aufgabe
Bestimmen Sie die Lösung der nachfolgenden partiellen Differentialgleichung (Anfangs - und Randbedingungen können dabei vernachlässigt werden): [mm] u_{rr} [/mm] + [mm] \frac{1}{r^2} \cdot u_{\varphi\varphi} [/mm] + [mm] \frac{1}{r} \cdot U_r [/mm] = 0

Hallo Leute,

irgendwie steh ich mit der Seperationsmethode zum Lösen der partiellen Differentialgleichungen noch etwas auf Kriegsfuß. Ich hoffe ihr könnt mir da ein wenig helfen.
Mein Gedankengang sieht so aus:

[mm] u_{rr} [/mm] + [mm] \frac{1}{r^2} \cdot u_{\varphi\varphi} [/mm] + [mm] \frac{1}{r} \cdot U_r [/mm] = 0

Seperationsansatz mit:
$u(r, [mm] \varphi) [/mm] = R(r) [mm] \cdot \phi(\varphi)$ [/mm]

Dann ergeben sich folgende partiellen Ableitungen:
[mm] $u_{r} [/mm] = R(r)' [mm] \cdot \phi(\varphi)$ [/mm]
[mm] $u_{rr} [/mm] = R(r)'' [mm] \cdot \phi(\varphi)$ [/mm]
[mm] $u_{\varphi\varphi} [/mm] = R(r) [mm] \cdot \phi(\varphi)''$ [/mm]

Wenn ich das alles in die obige Gleichung einsetze, dann bekomme ich:

[mm] \frac{r^2 \cdot R(r)'' + r \cdot R(r)'}{R(r)} [/mm] = [mm] \frac{-\phi(\varphi)''}{\phi(\varphi)} [/mm] = [mm] \lambda [/mm]

Für die Differentialgleichung [mm] \frac{-\phi(\varphi)''}{\phi(\varphi)} [/mm] = [mm] \lambda [/mm] bekomme ich nun für [mm] \lambda [/mm] > 0:

[mm] \phi(\varphi) [/mm] = [mm] c_1 \cdot cos(\wurzel(\lambda) \cdot \varphi) [/mm] + [mm] c_2 \cdot sin(\wurzel(\lambda) \cdot \varphi) [/mm]

Da die Lösung periodisch (mit Periode [mm] 2*\pi) [/mm] in [mm] \varphi [/mm] sein soll, erhält man die Bedingung [mm] \wurzel(\lambda) [/mm] = n
Es ergibt sich daher weiter:
[mm] \phi_n(\varphi) [/mm] = [mm] c_1 \cdot [/mm] cos(n [mm] \cdot \varphi) [/mm] + [mm] c_2 \cdot [/mm] sin(n [mm] \cdot \varphi) [/mm]

Nun möchte ich die Lösung für die Differentialgleichung [mm] \frac{r^2 \cdot R(r)'' + r \cdot R(r)'}{R(r)} [/mm] = [mm] \lambda [/mm]

mit [mm] \lambda_n [/mm] = [mm] n^2 [/mm] bestimmen.
Wenn ich das richtig gesehen habe, dann handelt es sich dabei um eine Euler'sche Differentialgleichung. In der Musterlösung steht, dass diese mit dem Ansatz $R(r) = [mm] r^\alpha$ [/mm] gelöst werden kann. Das ist jedoch der Punkt wo ich nicht mehr weiter weiß. Setze ich $R(r) = [mm] r^\alpha$, [/mm] dann bekomme ich für $R(r)' = [mm] \alpha [/mm] * [mm] r^{\alpha}$ [/mm] und $R(r)'' = [mm] \alpha^2 [/mm] * [mm] r^\alpha$. [/mm] Doch wie mache ich da weiter?

Ich würd mich freuen, wenn mir da jemand weiterhelfen kann.

        
Bezug
Separationsansatz: Antwort
Status: (Antwort) fertig Status 
Datum: 14:57 So 10.06.2012
Autor: MathePower

Hallo Schluchti,

> Bestimmen Sie die Lösung der nachfolgenden partiellen
> Differentialgleichung (Anfangs - und Randbedingungen
> können dabei vernachlässigt werden): [mm]u_{rr}[/mm] +
> [mm]\frac{1}{r^2} \cdot u_{\varphi\varphi}[/mm] + [mm]\frac{1}{r} \cdot U_r[/mm]
> = 0
>  Hallo Leute,
>
> irgendwie steh ich mit der Seperationsmethode zum Lösen
> der partiellen Differentialgleichungen noch etwas auf
> Kriegsfuß. Ich hoffe ihr könnt mir da ein wenig helfen.
>  Mein Gedankengang sieht so aus:
>
> [mm]u_{rr}[/mm] + [mm]\frac{1}{r^2} \cdot u_{\varphi\varphi}[/mm] +
> [mm]\frac{1}{r} \cdot U_r[/mm] = 0
>
> Seperationsansatz mit:
> [mm]u(r, \varphi) = R(r) \cdot \phi(\varphi)[/mm]
>  
> Dann ergeben sich folgende partiellen Ableitungen:
> [mm]u_{r} = R(r)' \cdot \phi(\varphi)[/mm]
>  [mm]u_{rr} = R(r)'' \cdot \phi(\varphi)[/mm]
>  
> [mm]u_{\varphi\varphi} = R(r) \cdot \phi(\varphi)''[/mm]
>  
> Wenn ich das alles in die obige Gleichung einsetze, dann
> bekomme ich:
>
> [mm]\frac{r^2 \cdot R(r)'' + r \cdot R(r)'}{R(r)}[/mm] =
> [mm]\frac{-\phi(\varphi)''}{\phi(\varphi)}[/mm] = [mm]\lambda[/mm]
>  
> Für die Differentialgleichung
> [mm]\frac{-\phi(\varphi)''}{\phi(\varphi)}[/mm] = [mm]\lambda[/mm] bekomme
> ich nun für [mm]\lambda[/mm] > 0:
>
> [mm]\phi(\varphi)[/mm] = [mm]c_1 \cdot cos(\wurzel(\lambda) \cdot \varphi)[/mm]
> + [mm]c_2 \cdot sin(\wurzel(\lambda) \cdot \varphi)[/mm]
>  
> Da die Lösung periodisch (mit Periode [mm]2*\pi)[/mm] in [mm]\varphi[/mm]
> sein soll, erhält man die Bedingung [mm]\wurzel(\lambda)[/mm] = n
>  Es ergibt sich daher weiter:
> [mm]\phi_n(\varphi)[/mm] = [mm]c_1 \cdot[/mm] cos(n [mm]\cdot \varphi)[/mm] + [mm]c_2 \cdot[/mm]
> sin(n [mm]\cdot \varphi)[/mm]
>  
> Nun möchte ich die Lösung für die Differentialgleichung
> [mm]\frac{r^2 \cdot R(r)'' + r \cdot R(r)'}{R(r)}[/mm] = [mm]\lambda[/mm]
>  
> mit [mm]\lambda_n[/mm] = [mm]n^2[/mm] bestimmen.
> Wenn ich das richtig gesehen habe, dann handelt es sich
> dabei um eine Euler'sche Differentialgleichung. In der
> Musterlösung steht, dass diese mit dem Ansatz [mm]R(r) = r^\alpha[/mm]
> gelöst werden kann. Das ist jedoch der Punkt wo ich nicht
> mehr weiter weiß. Setze ich [mm]R(r) = r^\alpha[/mm], dann bekomme
> ich für [mm]R(r)' = \alpha * r^{\alpha}[/mm] und [mm]R(r)'' = \alpha^2 * r^\alpha[/mm].
> Doch wie mache ich da weiter?
>  


Bei der Ableitung hast Du die Potenzregel nicht richtig angewendet:

[mm]R(r)' = \alpha * r^{\alpha\red{-1}}[/mm]

[mm]R(r)'' = \alpha *\red{\left(\alpha-1\right)}* r^{\alpha\red{-2}}[/mm]


> Ich würd mich freuen, wenn mir da jemand weiterhelfen
> kann.


Gruss
MathePower

Bezug
                
Bezug
Separationsansatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:25 So 10.06.2012
Autor: Schluchti

Ich glaub, ich mach heute schon zu lange Mathe. Vielen Dank für den Hinweis, MathePower! Jetzt stimmt es :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de