www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Seperable oder lineare DGL?
Seperable oder lineare DGL? < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Seperable oder lineare DGL?: Verständnis
Status: (Frage) beantwortet Status 
Datum: 20:13 Mo 24.02.2014
Autor: nomath

Hi,
im Prinzip habe ich folgendes Problem, woran erkenne ich z.b. dass:
[mm] f´(t)=\bruch{1}{(8t+1)^{2}} [/mm] f(0)=1
seperabel gelöst werden sollte (also Substitution u=f(t); [mm] \bruch{du}{dt}=f´(t)....) [/mm]
wohingegen
[mm] f´(t)=\bruch{-t^{2}-5}{t} [/mm] f(1)=1
linear gelöst wird (sprich in die Formel für lDGL erster Ordnung eingesetzt wird ..  f(t)=g(t)*(.....))?

Das z.b. [mm] f´(t)=(t^{4}+4)*(f(t))^2 [/mm] seperabel gelöst werden sollte ist soweit ja verständlich..

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Seperable oder lineare DGL?: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 Mo 24.02.2014
Autor: leduart

Hallo
die ersten 2 die du hinschreibst sind doch gar keine echten Dgl.
da steht doch einfach u'=f(t) d.h. u ist einfach eine Stammfunktion von f. da steht  aber bei dir u=f(t) u'=f(t)....) das versteh ich nicht. schreib doch bitte die Dgl hin , um die es geht.
wahrscheinlich geht es um die Pünktchen in u'
Gruß leduart

Bezug
                
Bezug
Seperable oder lineare DGL?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:55 Mo 24.02.2014
Autor: nomath

Ups; stimmt da fehlt was. Sry.
Also es geht um
a)
[mm] f'(t)=\bruch{1}{(8t+1)^{2}}f(t) [/mm] mit f(0)=1

b)
[mm] f'(t)=\bruch{-t^{2}-5}{t}f(t) [/mm] mit f(1)=1

Ich hab mir das ein bisschen beigebogen, dass z.b. wenn ich ein "Absolutglied" habe (bspw. [mm] f´t=\bruch{5}{t}f(t)+t^{2}) [/mm] ich das ganze "linear" löse. Wohingegen ich das bei z.b. g(f(t)) nicht anwenden kann; sondern via Separationsverfahren löse.

Sry wenn ich die Begriffe vllt. etwas flapsig um mich werfe, DGL war/ist lediglich ein kurzer Anriss im Script und die Recherche war leider tlw. nicht 100% verständlich.

Danke im Voraus.

Bezug
                        
Bezug
Seperable oder lineare DGL?: Antwort
Status: (Antwort) fertig Status 
Datum: 22:14 Mo 24.02.2014
Autor: leduart

Hallo
Beides sind lineare Dgl (weil y und y' nur mit Potenz 1 vorkommen Dgl, mit nicht konstanten Koeffizienten, beide sind homogen, d.h. nur
f'+g(t)*f=0
Beide löst man am besten mit dem Separationsansatz df/f=-g(x)dx
Alle Dgl der Form f'=g(x)*h(f) löst man mit Separation
Also werden deine 2 verschiedenen f gleich behandelt.
Gruß leduart

Bezug
                                
Bezug
Seperable oder lineare DGL?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:05 Di 25.02.2014
Autor: nomath

Danke dir, damit habe ich schon mal ne Aussage dazu ;)

Eine Frage habe ich allerdings noch:
[mm] f'(t)=\bruch{-t^{2}-5}{t}f(t) [/mm] mit f(1) = 1

Wenn ich das versuche zu lösen, würde ich so vorgehen:
[mm] \bruch{f'(t)}{f(t)}=\bruch{-t^{2}-5}{t} [/mm]

u = f(t)
[mm] \bruch{du}{dt}=f'(t) [/mm] <-> dt = [mm] \bruch{du}{f'(t)} [/mm]
Für die linke Seite habe ich also:
[mm] \integral_{a}^{b}{\bruch{f'(t)}{u}*\bruch{du}{f'(t)}} [/mm]

//f'(t) kürzt sich raus sodass
[mm] \integral_{a}^{b}{\bruch{1)}{u}*du} [/mm] übrig bleibt.
Aufleiten ergibt: ln(|u|)+C
Rücksubstituieren: ln(|f(t)|)+C

Die rechte Seite
[mm] \bruch{-t^{2}-5}{t} [/mm]
-> Grad Zähler > Grad Nenner -> also Polynomdivision
[mm] -t^{2}-5 [/mm] : t = -t R: -5

Fazit [mm] \bruch{-t^{2}-5}{t} [/mm] = -t + [mm] \bruch{-5}{x} [/mm]

-> [mm] \integral_{a}^{b}{-t + \bruch{-5}{x}dt} [/mm]
sollte dann [mm] -\bruch{1}{2}t^{2} [/mm] -5*ln(|t|) ergeben?

ln(|f(t)|)+C = [mm] -\bruch{1}{2}t^{2} [/mm] -5*ln(|t|) +c

ln(|f(t)|) = [mm] -\bruch{1}{2}t^{2} [/mm] -5*ln(|t|) +c wobei c = c2-c1

ln(|f(t)|) = [mm] -\bruch{1}{2}t^{2} [/mm] -5*ln(|t|) +c // :-5

[mm] \bruch{ln(|f(t)|)}{-5}= \bruch{1}{10}t^{2} [/mm] + ln(|t|) +c //e
[mm] \bruch{f(t)}{-5}=e^{\bruch{1}{10}t^{2}}+t [/mm] +c

Leider ist das Ergebnis aber total daneben... ich schätze mal meine Umformung stimmt iwo nicht, aber ehrlich gesagt ich komm nicht drauf....

Ergebnis (linear gerechnet) wäre: [mm] e^{-t-\bruch{5}{t}+6} [/mm]

Bisschen Hilfe wäre echt nett ;)






Bezug
                                        
Bezug
Seperable oder lineare DGL?: Antwort
Status: (Antwort) fertig Status 
Datum: 11:25 Di 25.02.2014
Autor: fred97


> Danke dir, damit habe ich schon mal ne Aussage dazu ;)
>  
> Eine Frage habe ich allerdings noch:
>  [mm]f'(t)=\bruch{-t^{2}-5}{t}f(t)[/mm] mit f(1) = 1
>  
> Wenn ich das versuche zu lösen, würde ich so vorgehen:
>  [mm]\bruch{f'(t)}{f(t)}=\bruch{-t^{2}-5}{t}[/mm]
>  
> u = f(t)
>  [mm]\bruch{du}{dt}=f'(t)[/mm] <-> dt = [mm]\bruch{du}{f'(t)}[/mm]

>  Für die linke Seite habe ich also:
>  [mm]\integral_{a}^{b}{\bruch{f'(t)}{u}*\bruch{du}{f'(t)}}[/mm]
>  
> //f'(t) kürzt sich raus sodass
>  [mm]\integral_{a}^{b}{\bruch{1)}{u}*du}[/mm] übrig bleibt.
>  Aufleiten ergibt: ln(|u|)+C
>  Rücksubstituieren: ln(|f(t)|)+C
>  
> Die rechte Seite
>  [mm]\bruch{-t^{2}-5}{t}[/mm]
>  -> Grad Zähler > Grad Nenner -> also Polynomdivision

>  [mm]-t^{2}-5[/mm] : t = -t R: -5
>  
> Fazit [mm]\bruch{-t^{2}-5}{t}[/mm] = -t + [mm]\bruch{-5}{x}[/mm]
>  
> -> [mm]\integral_{a}^{b}{-t + \bruch{-5}{x}dt}[/mm]
>  sollte dann
> [mm]-\bruch{1}{2}t^{2}[/mm] -5*ln(|t|) ergeben?
>  
> ln(|f(t)|)+C = [mm]-\bruch{1}{2}t^{2}[/mm] -5*ln(|t|) +c
>  
> ln(|f(t)|) = [mm]-\bruch{1}{2}t^{2}[/mm] -5*ln(|t|) +c wobei c =
> c2-c1
>  
> ln(|f(t)|) = [mm]-\bruch{1}{2}t^{2}[/mm] -5*ln(|t|) +c // :-5
>  
> [mm]\bruch{ln(|f(t)|)}{-5}= \bruch{1}{10}t^{2}[/mm] + ln(|t|) +c
> //e
>  [mm]\bruch{f(t)}{-5}=e^{\bruch{1}{10}t^{2}}+t[/mm] +c

Wie kommst Du darauf ????


>
> Leider ist das Ergebnis aber total daneben... ich schätze
> mal meine Umformung stimmt iwo nicht, aber ehrlich gesagt
> ich komm nicht drauf....
>
> Ergebnis (linear gerechnet) wäre: [mm]e^{-t-\bruch{5}{t}+6}[/mm]

Das stimmt auch nicht.

FRED

>  
> Bisschen Hilfe wäre echt nett ;)
>  
>
>
>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de