www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Shearing beliebige Richtung
Shearing beliebige Richtung < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Shearing beliebige Richtung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:56 Mo 04.06.2012
Autor: samu

Aufgabe
Sei ein diagonales Shear definiert, welches an der Hauptdiagonalen (x=y) sheart, mit sh_diag = 0.5.
Geben Sie die Transformationsmatrix (für homogene Koordinaten) als eine Matrix an.

Hallo,

Ich rechne gerade alte Klausuraufgaben durch und hätte eine Frage zum Shearing.
Allgemeines Shearing an den Achsen ist mir bekannt.
In der Aufgabenstellung ist gefordert anhand der Hauptdiagonalen zu shearen. Ich habe ausprobiert, das System um -45° zu drehen (auf die x-Achse), in x-Richtung zu shearen und wieder zurückzudrehen.
Um das Ergebnis zu Überprüfen habe ich mir ein Beispiel gezeichnet (einfach ein Quadrat mit den Eckpunkten 0,0; 1,0; 0,1; 1,1) Leider wird dabei der Punkt 1,1 ebenfalls verschoben - was an sich nicht sein darf, da er auf der Diagonalen liegt.
Ich habe die Matrix 5mal nachgerechnet, aber mein Ergebnis weist keine Rechenfehler auf...also muss die Idee schon falsch sein :(
Hat jmd eine andere Idee?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Vielen Dank für die Hilfe :)

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Shearing beliebige Richtung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:08 Mo 04.06.2012
Autor: Leopold_Gast

Was soll denn "Shearing" heißen? Ist damit eine "Scherung" gemeint?
Und wenn ja, warum dann dieses Denglisch, wo wir doch so ein schönes Wort für diese Abbildung haben!

Bezug
                
Bezug
Shearing beliebige Richtung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:30 Mo 04.06.2012
Autor: samu

Ich mache gerade ein Auslandssemester in Bergen/Norwegen. Da meine Vorlesungen alle in Englisch sind, habe ich die Aufgabenstellung übersetzt. Leider sind mir nur die englischen Begriffe bekannt.

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
        
Bezug
Shearing beliebige Richtung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:35 Mo 04.06.2012
Autor: Leopold_Gast

Eigentlich mußt doch doch nur die Bilder der Basisvektoren [mm]e_1 = (1,0)[/mm] und [mm]e_2 = (0,1)[/mm] kennen. Dann kannst du die Matrix der linearen Abbildung, die die Scherung bewirkt, aufstellen. Was bedeutet in diesem Zusammenhang "sh_diag = 0.5" ?

Bezug
                
Bezug
Shearing beliebige Richtung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:03 Mo 04.06.2012
Autor: samu

in der aufgabenstellung ist eine art grafik abgebildet - welche die scherung anhand der hauptdiagonalen zeigt. sh_diag ist im endeffekt die scherung, die für x und y gleich ist (vermute ich zumindest).
ich hätte einfach vermutet, dass ich das system drehe, auf eine achse lege und danach entlang der achse schere, also meine referenz-linie (falls ich auf die x-achse drehe) y=0 ist. das lässt sich auch prima ausrechnen, das problem ist nur, dass auch punkte auf der diagonalen verschoben werden.
hier mal ein screenshot der abbildung:
http://www.pic-upload.de/view-14504384/diag-shear.jpg.html

(ich habe es nicht hinbekommen, dass er es im forum anzeigt und hochladen liess sich die datei auch nicht)

Bezug
                        
Bezug
Shearing beliebige Richtung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:13 Mo 04.06.2012
Autor: samu


oh man...ich habe gerade noch einmal alles nachgerechnet und habe den denkfehler gefunden:
ich rotiere die abbildung um -45° auf die x-achse, schere entlang der x-achse und invertiere die rotation.

mein fehler war: ich habe zwar das system auf die x-achse gelegt, allerdings dann entlang der y-achse geschert.

vielen vielen dank für deine hilfe...die darstellung der basisvektoren war echt hilfreich.

Bezug
                        
Bezug
Shearing beliebige Richtung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:15 Mo 04.06.2012
Autor: Leopold_Gast

Bitte lade das Bild hier hoch. Füge dort, wo du das Bild im Text haben willst, einfach

[Img]1[/Img]

ein, wobei du "Img" klein schreiben mußt, also "img". Nach dem Absenden des Beitrags wirst du aufgefordert, das Bild hochzuladen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de