www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Sicherheitswahrscheinlichkeit
Sicherheitswahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sicherheitswahrscheinlichkeit: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:37 Sa 31.03.2007
Autor: honkmaster

Aufgabe
Nach Ergegnissen, einer Untersuchung besitzen 60 % aller Jugendlichen ein Fernsehgerät.

a) Wie viele Haushalte mit Jugendlichen müsste man mindestens auswählen, damit unter diesen gewählten Haushalten mit einer Wahrscheinlichkeit von mindestens 90% mindestens einer ist, in dem der Jugendliche ein Fernsehgerät besitzt?

Habe mir an dieser Aufgabe sehr lange den Kopf zergrübelt, da ich einfach keinen Zugang dazu finde. Wäre nett wenn mir jmd. einen Tipp oder die Lösung geben könnte damit ich es nachvollziehen kann. Habe versucht Summen der binomialverteilung von k=0 bis k=x aufzulösen nach ka aber das hat alles nicht so richtig funktioniert.

Brauche Hilfe,

Danke
honkmaster

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Sicherheitswahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:24 Sa 31.03.2007
Autor: Zwerglein

Hi, honk,

> Nach Ergegnissen, einer Untersuchung besitzen 60 % aller
> Jugendlichen ein Fernsehgerät.
>  
> a) Wie viele Haushalte mit Jugendlichen müsste man
> mindestens auswählen, damit unter diesen gewählten
> Haushalten mit einer Wahrscheinlichkeit von mindestens 90%
> mindestens einer ist, in dem der Jugendliche ein
> Fernsehgerät besitzt?
>  Habe mir an dieser Aufgabe sehr lange den Kopf zergrübelt,
> da ich einfach keinen Zugang dazu finde. Wäre nett wenn mir
> jmd. einen Tipp oder die Lösung geben könnte damit ich es
> nachvollziehen kann. Habe versucht Summen der
> binomialverteilung von k=0 bis k=x aufzulösen nach ka aber
> das hat alles nicht so richtig funktioniert.

Musst natürlich über das Gegenereignis arbeiten!
Also: Gegeben ist eine Binomialverteilung B(n; 0,6) mit unbekannter Kettenlänge n.

Es soll gelten:

P(X [mm] \ge [/mm] 1) [mm] \ge [/mm] 0,9

oder: 1 - P(X = 0) [mm] \ge [/mm] 0,9

bzw. P(X=0) [mm] \le [/mm] 0,1

Kommst Du nun weiter?

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de