www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Siebformel;Facharbeit
Siebformel;Facharbeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Siebformel;Facharbeit: Frage
Status: (Frage) beantwortet Status 
Datum: 18:07 Do 17.02.2005
Autor: milkalein

hi!
ich muss eine Facharbeit über das Thema Rencontre-Problem schreiben und dabei die Silvester- oder auch Siebformel beweisen.
Zur Veranschaulichung soll ich das Problem erst mal für n=5 beschreiben: also wie groß ist die Wahrscheinlichkeit, dass von n Briefen, die willkürlich in n Umschläge gesteckt werden, keiner in seinem richtigen Umschlag steckt?
Wie komme ich auf die Wahrscheinlichkeit für n=5, ohne die Siebformel zu benutzen und ohne alle verschiedenen möglichkeiten rauszuschreiben, wie die Briefe in den Umschlägen stecken könnten?
Ich bin bisher nur so weit, dass |S|=5! beträt (der Ergebnisraum).
Den Rest der Facharbei habe ich bereits eigenständig erarbeitet!
Bin für jede hilfe und auch für jeden Ansatz dankbar!
milkalein

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Siebformel;Facharbeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:42 Do 17.02.2005
Autor: Stefan

Hallo!

Ich würde die Siebformel einfach sprachlich umschreiben und dann die einzelnen Möglichkeiten einzeln ausrechnen, also etwa so (nur schöner formulieren! ;-)):

Wir interessieren uns für die Wahrscheinlichkeit, dass in mindestens einen der fünf Umschläge der richtige Brief gesteckt wird (denn das Geggenereignis ist die gesuchte Wahrscheinlichkeit).

Zunächst addieren wir für jeden Umschlag die Möglichkeiten, dass zumindestens in ihn der richtige Brief  gesteckt wurde (dafür gibt es $n [mm] \cdot [/mm] (n-1)!$ Möglichkeiten, da man $n$ Umschläge wählen kann und in die übrigen $n-1$ Umschläge irgendeiner der übrigen $n-1$ Briefe gesteckt werden kann), stellen dann aber fest, dass wir die Fälle, wo mindestens zwei Briefe in die richtigen Umschläge gesteckt wurden, doppel gezählt haben und ziehen diese ab. Dies sind ${n [mm] \choose [/mm] 2} [mm] \cdot [/mm] (n-2)!$ Möglichkeiten, da wir aus $n$ Umschlägen $2$ auswählen können, in die die richtigen Briefe gesteckt wurden  und die anderen $n-2$ Umschläge können irgendwelche der übrigen $n-2$ Briefe gesteckt werden. Die Fälle, wo drei Briefe in den richtigen Umschlag gesteckt wurden, wurden dabei aber doppelt gezählt (denn wenn einmal  mindestens in die Umschläge $A$ und $B$ der richtige Brief und ein anderes Mal mindestens in die Umschläge $B$ und $C$ der richtige Brief gesteckt wurde, dann ist der Fall, dass mindestens in die Umschläge $A$, $B$ und $C$ der richtige Brief gesteckt wurde, beides Mal enthalten). Also müssen wir die Fälle, wo mindestens drei Briefe in den richtigen Umschlag gesteckt wurden, wieder dazuaddieren (denn wir haben so vorher zuviel abgezogen). Dies sind ${n [mm] \choose [/mm] 3} [mm] \cdot [/mm] (n-3)!$ Möglichkeiten, da wir aus $n$ Umschlägen $3$ auswählen können, in die die richtigen Briefe gesteckt wurden  und die anderen $n-3$ Umschläge können irgendwelche der übrigen $n-3$ Briefe gesteckt werden.

Usw.

Ob das so gewollt  ist, weiß ich nicht, aber es zeigt, dass du die Formel verstanden hast. :-)

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de