Sigma-Algebren < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:30 Sa 26.04.2008 | Autor: | Gero |
Aufgabe | A [mm] \subset \IR [/mm] offen [mm] \gdw \forall [/mm] x [mm] \in [/mm] A [mm] \exists [/mm] n [mm] \in \IN: [/mm] (x- [mm] \bruch{1}{n}, [/mm] x+ [mm] \bruch{1}{n}) \subseteq [/mm] A. Sei O:= [mm] \{A \subseteq \IR | \mbox{A offen in} \IR \} [/mm] Topologie auf [mm] \IR [/mm] und Sigma(O):= [mm] \bigcap_{F \subseteq O, F ist Sigma-Algebra}^{} [/mm] F die kleinste Sigma-Algebra auf [mm] \IR, [/mm] die O als Teilmenge enthält.
a.) Zeige, dass sich jede offene Menge in [mm] \IR [/mm] als abzählbare Vereinigung von offenen Intervallen schreiben lässt.
b.) Zeige mit a.), dass Sigma(O)= [mm] Sigma(O_1), [/mm] wobei [mm] O_1:=\{(a,b)| - \infty \le a |
So, hallo an alle,
zur Zeit hab ich´s mit den Sigma-Algebren. *g*
Aber ich find das immer ziemlich schwer mir sowas vorzustellen und hab deshalb keine Ahnung, wie ich da anfangen soll. Vorallem bei der b.) nicht. Bei der a.) bin ich noch dran, dass könnt ich vielleicht noch hinbekommen. Kann mir vielleicht jemand helfen?
Danke schonmal im voraus!
|
|
|
|
Aufgabe b) ergibt sich direkt aus a): [mm] \sigma(O_1) [/mm] enthält alle offenen Intervalle und - als [mm] \sigma [/mm] -Algebra - damit auch deren abzählbaren Vereinigungen. Mit a) wurde gezeigt, dass sie damit auch alle offenen Mengen enthalten muss, weshalb sie also alle Mengen umfassen muss, die in [mm] \sigma(O) [/mm] liegen. Andererseits umfasst [mm] \sigma(O) [/mm] alle Mengen die in [mm] \sigma(O_1) [/mm] liegen (warum?), also sind sie gleich.
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 13:17 Di 29.04.2008 | Autor: | Gero |
Also, erstmal ne Frage zu a.) wenn ich die Definiton von oben benutze, muss für ein Element x aus A [mm] \in [/mm] O gelten (x-1/n, x+1/n) [mm] \in [/mm] A [mm] \forall [/mm] n [mm] \in \IN. [/mm] Wenn ich jetzt über alle Intervalle (x-1/n, x+1/n) vereinige, liegt die offene Menge wieder drin. Ist a.) damit schon bewiesen?
OK, bei b.) folgt Inklusion [mm] Sigma(O_1) \subset [/mm] Sigma(O) direkt aus a.) und bei Sigma(O) [mm] \subset Sigma(O_1) [/mm] gilt, dass man ein großes n wählt, so dass ein x [mm] \in [/mm] A mit der Umgebung (x-1/n, x+1/n) [mm] \subseteq [/mm] A auch in jedem Intervall enthalten ist. Kann das so sein?
Vielen Dank schonmal im voraus!
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:20 Do 01.05.2008 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|