www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Signatur, Definit
Signatur, Definit < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Signatur, Definit: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:05 Do 21.02.2013
Autor: Lu-

Aufgabe
Wenn ich die Signatur eine Matrix [mm] A\in M_{n \times n} (\IR) [/mm] habe. z.B: signatur(A)=(a,b) mit a,b [mm] \in \IN [/mm] ohne 0
Ist dann  automatisch die Matrix indefinit?
Eine Matrix muss doch entweder [mm] semi-positiv(A\ge0), semi-negativ(A\le0) [/mm] oder indefenit sein?Also jede matrix hat eine der 3 eigenschaften?

Ich weiß aus Vo:
A positiv definit (A>0)<=> a=n, b=0
A negativ definit (A<0)<=> a=0,b=n
[mm] A\ge [/mm] 0 <=> b=0
A [mm] \le [/mm] 0 <=> a=0

lg ;)

        
Bezug
Signatur, Definit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Sa 23.02.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Signatur, Definit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:29 Sa 23.02.2013
Autor: M.Rex

Hallo


> Wenn ich die Signatur eine Matrix [mm]A\in M_{n \times n} (\IR)[/mm]
> habe. z.B: signatur(A)=(a,b) mit a,b [mm]\in \IN[/mm] ohne 0
>  Ist dann  automatisch die Matrix indefinit?
>  Eine Matrix muss doch entweder [mm]semi-positiv(A\ge0), semi-negativ(A\le0)[/mm]
> oder indefenit sein?Also jede matrix hat eine der 3
> eigenschaften?
>  
> Ich weiß aus Vo:
>   A positiv definit (A>0)<=> a=n, b=0

>  A negativ definit (A<0)<=> a=0,b=n

>  [mm]A\ge[/mm] 0 <=> b=0

>  A [mm]\le[/mm] 0 <=> a=0

>  lg ;)

Was meinst du mit [mm] $A\ge0$ [/mm] oder [mm] $A\le0$? [/mm] Eine Matrix kann nicht größer oder kleiner als Null sein. Kannst du die Aufgabenstellung mal prüfen, ob du vielleicht etwas übersehen hast.
Und was ist signatur(A)=(a,b)?

Marius


Bezug
                
Bezug
Signatur, Definit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:40 Mo 25.02.2013
Autor: Lu-

Hallo
Ich hab schon eine Antwort auf meine Frage.
Sie lautet ja, das stimmt so!

> Was meinst du mit $ [mm] A\ge0 [/mm] $ oder $ [mm] A\le0 [/mm] $?

Siehe 1 beitrag $ [mm] semi-positiv(A\ge0), semi-negativ(A\le0) [/mm] $, A positiv definit (A>0), A negativ definit (A<0)  

> Und was ist signatur(A)=(a,b)?

Einfach die Signatur von A. Manchmal wird auch die Differenz a-b, als Signatur von A bezeichnet. Ist eben die zu der entsprechenden symmetrischen Billinearform [mm] \beta [/mm] zugehörige signatur.
a = max [mm] \{ dim(W) | W Teilraum von V mit \beta|_W >0 \} [/mm]
b = max [mm] \{ dim(W) | W Teilraum von V mit \beta|_W <0 \} [/mm]

Ich hatte gedacht das wären alles gängige Notationen?
Wie bezeichnet ihr das denn?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de