www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Signifikanztest
Signifikanztest < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Signifikanztest: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:47 So 08.07.2007
Autor: el_grecco

Aufgabe
Der Stadionsprecher behauptet, dass seit der Fußball-WM im eigenen Land die Fußballbegeisterung in der Stadt gestiegen sei und mindestens 80 % der Einwohner dieser Stadt für einen Ausbau des Stadions seien.

a) Um diese Behauptung zu testen, befragen die Schüler in der Halbzeitpause 100 zufällig ausgewählte Zuschauer. Wie muss die Entscheidungsregel mit einem möglichst großen Ablehnungsbereich lauten, wenn die Schüler die Behauptung des Stadionsprechers mit einer Wahrscheinlichkeit von höchstens 10 % irrtümlich ablehnen wollen?

Hallo!
Die Aufgabe stammt aus dem GK-Abitur in Bayern in diesem Jahr (GM2. WAHRSCHEINLICHKEITSRECHNUNG/STATISTIK; III.; Aufgabe nr. 4)

Die Lösung lautet wie folgt:

P hoch 100 index 0,8 (x [mm] \le [/mm] k) [mm] \le [/mm] 0,1; Ablehnungsbereich {0;1;...;74}


Problem:
Wie kommen die darauf, [mm] \le [/mm] k zu sagen?


        
Bezug
Signifikanztest: linkssetiger Test
Status: (Antwort) fertig Status 
Datum: 15:12 So 08.07.2007
Autor: Kroni

Hi,

die Behauptung lautet doch: MINDESTENS 80% der Leute sind für den Ausbau.
Das heißt, wenn ich 100 Leute befrage, dann sollten mindestens 80 Personen dafür sein oder mehr.
Wann lehnst du denn dann die Behauptung ab? Genau, wenn du auf jeden Fall immerhin weniger Leute als die 80 (oder weniger, das musst du ja rausfinden) dafür sind.
Es handelt sich also um einen Linksseitigen Hypothesentest, und deshalb sagen die, dass die Wahrscheinlichkeit, dass X: Anzahl der Personen, die für den Ausbau sind, kleiner gleich k ist.
Und genau diese Wahrscheinlichkeit sollte doch kleiner gleich 10% sein.

Und genau mit dieser Überlegung kommt man auf P(x<=k)<0.1

LG

Kroni

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de