Simpson Verfahren < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Herleitung des Simpson-Verfahrens |
Hat sich schon jemand die Mühe gemacht, das Simpson-Verfahren auf Oberstufenniveau herzuleiten, ohne die ganze Theorie, die für die übliche Herleitung notwendig ist?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo!
Wie wäre es hiermit! Das habe ich in meinem alten Schulbuch gefunden:
Statt durch die Randpunkte eines Teilintervalls den Graphen einer linearen Funktion zu legen (Trapenzsummerverfahren) kann man auch den Graphen einer quadratischen Funktion durch drei hintereinander liegende Punkte legen, dabei soll der mittlere Punkt in der Mitte des Teilintervalls liegen.
zu zeigen:
[mm] \integral_{a}^{b}{f(x) dx}\approx\bruch{b-a}{6}\cdot[f(a)+4f(\bruch{a+b}{2})+f(b)]
[/mm]
Gesucht ist eine Parabel, die durch die Punkte A(a|f(a)), [mm] B(\bruch{a+b}{2}|f(\bruch{a+b}{2}) [/mm] und C(b|f(b)) verläuft. Die Koordinaten dieser Punkte müssen also die quadratische Gleichung [mm] \alpha\cdot x^{2}+\beta\cdot [/mm] x [mm] +\gamma=f(x) [/mm] erfüllen. Stelle das zugehörige LGS auf. Mit Hilfe dieser Gleichung lässt sich der Term von [mm] \integral_{a}^{b}{(\alpha\cdot x^{2}+\beta\cdot x +\gamma) dx} [/mm] vereinfachen.
Da die Punkte A,B,C auf dem Graphen von f liegen, erfüllen sie das Gleichungssystem
[mm] a^{2}\alpha [/mm] + [mm] a\beta [/mm] + [mm] \gamma=f(a)
[/mm]
[mm] (\bruch{a+b}{2})^{2}\alpha [/mm] + [mm] \bruch{a+b}{2}\beta [/mm] + [mm] \gamma=f(\bruch{a+b}{2})
[/mm]
[mm] b^{2}\alpha [/mm] + [mm] b\beta [/mm] + [mm] \gamma=f(b)
[/mm]
Für das Integral [mm] \integral_{a}^{b}{(\alpha\cdot x^{2}+\beta\cdot x +\gamma) dx} [/mm] gilt:
[mm] \integral_{a}^{b}{(\alpha\cdot x^{2}+\beta\cdot x +\gamma) dx}=\alpha\bruch{b³-a³}{3}+\beta\bruch{b²-a²}{2}+\gamma\cdot(b-a)=\alpha\cdot\bruch{(b-a)(b²+ab+a²)}{3}+\beta\bruch{(b-a)(b+a)}{2}+\gamma(b-a)=\bruch{b-a}{6}\cdot[2\alpha(b²+ab+a²)+3\beta(b+a)+6\gamma] [/mm] (*)
Multipliziert man die mittlere Gleichung des Gleichungssytems mit 4, so lautet diese:
[mm] (a²+2ab+b²)\alpha +(2a+2b)\beta [/mm] + [mm] 4\gamma=4f(\bruch{a+b}{2})
[/mm]
Addiert man hierzu die erste und die zweite Gleichung des Gleichungssytems, so erhält man:
[mm] (2a^{2}+2ab+2b^{2})\alpha +(3a+3b)\beta +6\gamma=4f(\bruch{a+b}{2})+f(b) [/mm] d.h links genau den Term in Gleichung (*)
[mm] \integral_{a}^{b}{f(x) dx}\approx \bruch{b-a}{6}\cdot[f(a)+4f(\bruch{a+b}{2})+f(b)]
[/mm]
Vielleicht kannst du damit etwas anfangen.
Gruß
|
|
|
|
|
Ganz herzlichen Dank. Das ist genau das, was ich gesucht habe.
Gruß
|
|
|
|