www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Singulärwerte und Eigenwerte
Singulärwerte und Eigenwerte < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Singulärwerte und Eigenwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:28 So 12.06.2016
Autor: DerPinguinagent

Aufgabe
Aufgabe: Sei V ein endlich erzeugter unitärer Vektorraum und sei F ∈ [mm] End_C(V) [/mm] normal. Welche Beziehung besteht zwischen den Singulärwerten und den Eigenwerten von F?

Also ich gehe der Vermutung, dass diese Aufgabe mithilfe der Singulärwertzerlegung zu Lösen ist ich weiß allerdings nicht genau wie,

Ich habe schon folgendes F ist Normal => es existiert eine ONB, aus Eigenvektoren bestehend aus Eigenwerten  => F ist pos. semidefinit.
Ich vermute, das man nun den Satz für die Singulärwertzerlegung, das man die Eigenwerte sortiert und die dann quasi daraus folgt das Singulärwert = Wurzel aus Eigenwert ist oder Eigenwert zum Betrag. Ich weiß nicht genau wie man das aufschreiben soll

        
Bezug
Singulärwerte und Eigenwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:54 Mo 13.06.2016
Autor: DerPinguinagent

Kann mir bitte Jemand Helfen?  

Bezug
                
Bezug
Singulärwerte und Eigenwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 10:09 Mo 13.06.2016
Autor: fred97


> Kann mir bitte Jemand Helfen?  

Hab ich gemacht !

FRED


Bezug
        
Bezug
Singulärwerte und Eigenwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 10:08 Mo 13.06.2016
Autor: fred97


> Aufgabe: Sei V ein endlich erzeugter unitärer Vektorraum
> und sei F ∈ [mm]End_C(V)[/mm] normal. Welche Beziehung besteht
> zwischen den Singulärwerten und den Eigenwerten von F?
>  Also ich gehe der Vermutung, dass diese Aufgabe mithilfe
> der Singulärwertzerlegung zu Lösen ist ich weiß
> allerdings nicht genau wie,
>
> Ich habe schon folgendes F ist Normal => es existiert eine
> ONB, aus Eigenvektoren bestehend aus Eigenwerten  => F ist
> pos. semidefinit.
> Ich vermute, das man nun den Satz für die
> Singulärwertzerlegung, das man die Eigenwerte sortiert und
> die dann quasi daraus folgt das Singulärwert = Wurzel aus
> Eigenwert ist oder Eigenwert zum Betrag. Ich weiß nicht
> genau wie man das aufschreiben soll


Zunächst allgemein:

Mit $(*|*)$ bezeichne ich das Skalarprodukt auf V.

Ist nun  $T [mm] \in [/mm]  End(V) $, so ist [mm] T^{\star}T [/mm] positiv semidefinit, hat also nichtnegative Eigenwerte. Ist [mm] \lambda [/mm] ein solcher, so heißt [mm] \wurzel{\lambda} [/mm] Singulärwert von $T$.

Nun sei $F [mm] \in [/mm]  End(V) $ normal. Der Spektralsatz besagt: sind [mm] \lambda_1,...., \lambda_n [/mm] die Eigenwerte von F, so gibt es eine ONB [mm] \{u_1,...,u_n\} [/mm] von V mit:

   [mm] F(x)=\summe_{k=1}^{n}\lambda_k(x|u_k)u_k [/mm]   für alle x [mm] \in [/mm] V.

Dabei gelte [mm] $F(u_k)=\lambda_k u_k$ [/mm]

Dann ist

   [mm] F^{\star}F(x)=F(F^{\star}(x))=\summe_{k=1}^{n}\lambda_k((F^{\star}(x)|u_k)u_k=\summe_{k=1}^{n}\lambda_k(x|F(u_k))u_k=\summe_{k=1}^{n}\lambda_k(x| \lambda_ku_k)u_k=\summe_{k=1}^{n}|\lambda_k|^2(x|u_k)u_k [/mm]   für alle x [mm] \in [/mm] V.

Somit:  [mm] F^{\star}F(u_k)=|\lambda_k|^2u_k [/mm] für k=1,...,n.

[mm] F^{\star}F [/mm] hat also genau die Eigenwerte [mm] |\lambda_1|^2,...., |\lambda_n|^2 [/mm]

Damit sind die Singulärwerte von F gegeben durch

     [mm] |\lambda_1|,...., |\lambda_n|. [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de