www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Singulärwertzerlegung
Singulärwertzerlegung < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Singulärwertzerlegung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:40 Fr 12.06.2009
Autor: GreatBritain

Aufgabe
$ N = [mm] \pmat [/mm] {0 & 1 & 0 [mm] \\ [/mm] 0 & 0 & -1 [mm] \\ [/mm] 0 & 0 & 0} $

Berechnen Sie die SVD

hi
ich habe hier im forum alles zum thema singulärwertzerlegung gelesen, habe seitenweise dazu gelesen, aber irgendwo hackts einfach...

$ N^TN = [mm] \pmat [/mm] {0 & 0 & 0 [mm] \\ [/mm] 0 & 1 & 0 [mm] \\ [/mm] 0 & 0 & 1} $

Eigenwerte: $ [mm] \lambda_1 [/mm] = 1, [mm] \lamda_2 [/mm] = 1, [mm] \lambda_3 [/mm] = 0$

Singulärwerte: [mm] $\sigma_1 [/mm] = 1, [mm] \sigma_2 [/mm] = 1, [mm] \sigma_3 [/mm] = 0$

Eigenvektoren: zu [mm] $\lambda_{1,2}: [/mm] ~ [mm] v_{1,2} [/mm] = [mm] \vektor{0 \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}} [/mm] ; [mm] \lambda_3: [/mm] ~ [mm] v_3 [/mm] = [mm] \vektor{1 \\ 0 \\ 0}$ [/mm]

so, bis hierher ja kein thema, aber hatte ja noch nicht allzuviel mit singulärwertzerlegung zu tun ;-)

zur Matrix V: ich weiß, dass die Spalten dieser Matrix aus normierten Eigenvektoren besteht. Gleichzeitig soll es eine ONB sein. Ich bin mir hier nicht ganz sicher, wie sie auszusehen hat. Da [mm] $v_1 [/mm] = [mm] v_2$ [/mm] habe ich 2 Eigenvektoren. Diese muss ich nun zu einer ONB des [mm] $\mathbb{R}^3$ [/mm] ergänzen, beispielsweise mit [mm] $e_3$: [/mm]

$V = [mm] \pmat{0 & 1 & 0\\ \frac{1}{\sqrt{2}} & 0 & 0 \\ \frac{1}{\sqrt{2}} & 0 & 1}$ [/mm]

Die Matrix [mm] $\Sigma$ [/mm] hat auf der Diaginalen die Singulärwerte:
[mm] $\Sigma [/mm] = [mm] \pmat [/mm] {1 & 0 & 0 [mm] \\ [/mm] 0&1&0 [mm] \\ [/mm] 0&0&0}$

ok - erstmal bis hierher. Ist das soweit korrekt?? Ich hoffe es, denn mein Gefühl sagt mir, es liegt an der Matrix U ;-) Deren Berechnung ist mir theoretisch klar. Aber das scheint mir hier etwas tricky zu sein.

Wenn bis hierhin alles stimmt versuche ich mich morgen mal an der Berechnung der Matrix U - ansonsten bitte Fehler / Verbesserungen meiner bisherigen Schritte angeben :-)

Vielen Dank & Gruß GB

        
Bezug
Singulärwertzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:09 Fr 12.06.2009
Autor: MathePower

Hallo GreatBritain,

> [mm]N = \pmat {0 & 1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0}[/mm]
>  
> Berechnen Sie die SVD
>  hi
>  ich habe hier im forum alles zum thema
> singulärwertzerlegung gelesen, habe seitenweise dazu
> gelesen, aber irgendwo hackts einfach...
>  
> [mm]N^TN = \pmat {0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1}[/mm]
>  
> Eigenwerte: [mm]\lambda_1 = 1, \lamda_2 = 1, \lambda_3 = 0[/mm]
>  
> Singulärwerte: [mm]\sigma_1 = 1, \sigma_2 = 1, \sigma_3 = 0[/mm]
>  
> Eigenvektoren: zu [mm]\lambda_{1,2}: ~ v_{1,2} = \vektor{0 \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}} ; \lambda_3: ~ v_3 = \vektor{1 \\ 0 \\ 0}[/mm]


Die Eigenvektoren zum Eigenwert 1 stimmen nicht:

Hier ist der Kern der Matrix

[mm]N^{T}N-E=\pmat {0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1}-\pmat {1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1}=\pmat {-1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0}[/mm]

zu betrachten.

Hieraus erhältst Du 2 verschiedene Eigenvektoren.


>  
> so, bis hierher ja kein thema, aber hatte ja noch nicht
> allzuviel mit singulärwertzerlegung zu tun ;-)
>  
> zur Matrix V: ich weiß, dass die Spalten dieser Matrix aus
> normierten Eigenvektoren besteht. Gleichzeitig soll es eine
> ONB sein. Ich bin mir hier nicht ganz sicher, wie sie
> auszusehen hat. Da [mm]v_1 = v_2[/mm] habe ich 2 Eigenvektoren.
> Diese muss ich nun zu einer ONB des [mm]\mathbb{R}^3[/mm] ergänzen,
> beispielsweise mit [mm]e_3[/mm]:
>  
> [mm]V = \pmat{0 & 1 & 0\\ \frac{1}{\sqrt{2}} & 0 & 0 \\ \frac{1}{\sqrt{2}} & 0 & 1}[/mm]
>  
> Die Matrix [mm]\Sigma[/mm] hat auf der Diaginalen die
> Singulärwerte:
>  [mm]\Sigma = \pmat {1 & 0 & 0 \\ 0&1&0 \\ 0&0&0}[/mm]
>  
> ok - erstmal bis hierher. Ist das soweit korrekt?? Ich
> hoffe es, denn mein Gefühl sagt mir, es liegt an der Matrix
> U ;-) Deren Berechnung ist mir theoretisch klar. Aber das
> scheint mir hier etwas tricky zu sein.
>  
> Wenn bis hierhin alles stimmt versuche ich mich morgen mal
> an der Berechnung der Matrix U - ansonsten bitte Fehler /
> Verbesserungen meiner bisherigen Schritte angeben :-)
>  
> Vielen Dank & Gruß GB


Gruß
MathePower

Bezug
                
Bezug
Singulärwertzerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:12 Fr 12.06.2009
Autor: GreatBritain


> Hallo GreatBritain,
>  
> > [mm]N = \pmat {0 & 1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0}[/mm]
>  >  
> > Berechnen Sie die SVD
>  >  hi
>  >  ich habe hier im forum alles zum thema
> > singulärwertzerlegung gelesen, habe seitenweise dazu
> > gelesen, aber irgendwo hackts einfach...
>  >  
> > [mm]N^TN = \pmat {0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1}[/mm]
>  >  
> > Eigenwerte: [mm]\lambda_1 = 1, \lamda_2 = 1, \lambda_3 = 0[/mm]
>  >

>  
> > Singulärwerte: [mm]\sigma_1 = 1, \sigma_2 = 1, \sigma_3 = 0[/mm]
>  
> >  

> > Eigenvektoren: zu [mm]\lambda_{1,2}: ~ v_{1,2} = \vektor{0 \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}} ; \lambda_3: ~ v_3 = \vektor{1 \\ 0 \\ 0}[/mm]
>  
>
> Die Eigenvektoren zum Eigenwert 1 stimmen nicht:
>  
> Hier ist der Kern der Matrix
>  
> [mm]N^{T}N-E=\pmat {0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1}-\pmat {1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1}=\pmat {-1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0}[/mm]
>  
> zu betrachten.
>  
> Hieraus erhältst Du 2 verschiedene Eigenvektoren.

*argh* - dummer fehler... man kann sich das leben auch selbst schwer machen, echt.

danke schön für den hinweis. werd das ganze dann morgen nochmal probieren.

>  
>
> >  

> > so, bis hierher ja kein thema, aber hatte ja noch nicht
> > allzuviel mit singulärwertzerlegung zu tun ;-)
>  >  
> > zur Matrix V: ich weiß, dass die Spalten dieser Matrix aus
> > normierten Eigenvektoren besteht. Gleichzeitig soll es eine
> > ONB sein. Ich bin mir hier nicht ganz sicher, wie sie
> > auszusehen hat. Da [mm]v_1 = v_2[/mm] habe ich 2 Eigenvektoren.
> > Diese muss ich nun zu einer ONB des [mm]\mathbb{R}^3[/mm] ergänzen,
> > beispielsweise mit [mm]e_3[/mm]:
>  >  
> > [mm]V = \pmat{0 & 1 & 0\\ \frac{1}{\sqrt{2}} & 0 & 0 \\ \frac{1}{\sqrt{2}} & 0 & 1}[/mm]
>  
> >  

> > Die Matrix [mm]\Sigma[/mm] hat auf der Diaginalen die
> > Singulärwerte:
>  >  [mm]\Sigma = \pmat {1 & 0 & 0 \\ 0&1&0 \\ 0&0&0}[/mm]
>  >  
> > ok - erstmal bis hierher. Ist das soweit korrekt?? Ich
> > hoffe es, denn mein Gefühl sagt mir, es liegt an der Matrix
> > U ;-) Deren Berechnung ist mir theoretisch klar. Aber das
> > scheint mir hier etwas tricky zu sein.
>  >  
> > Wenn bis hierhin alles stimmt versuche ich mich morgen mal
> > an der Berechnung der Matrix U - ansonsten bitte Fehler /
> > Verbesserungen meiner bisherigen Schritte angeben :-)
>  >  
> > Vielen Dank & Gruß GB
>
>
> Gruß
>  MathePower

Bezug
                
Bezug
Singulärwertzerlegung: richtig so?
Status: (Frage) beantwortet Status 
Datum: 12:07 Sa 13.06.2009
Autor: GreatBritain

so - ausgeruht mit erholtem hirn also nochmal:

$ N^TN = [mm] \pmat [/mm] {0 & 0 & 0 [mm] \\ [/mm] 0 & 1 & 0 [mm] \\ [/mm] 0 & 0 & 1} $

Eigenwerte: $ [mm] \lambda_1 [/mm] = 1, [mm] \lamda_2 [/mm] = 1, [mm] \lambda_3 [/mm] = 0$

Singulärwerte: [mm] $\sigma_1 [/mm] = 1, [mm] \sigma_2 [/mm] = 1, [mm] \sigma_3 [/mm] = 0$

Eigenvektoren: zu [mm] $\lambda_{1,2}: [/mm] ~ [mm] v_1 [/mm] = [mm] \vektor{0 \\ 1 \\ 0} [/mm] ~ [mm] v_2 [/mm] = [mm] \vektor{0 \\ 0 \\ 1}; \lambda_3: ~v_3 [/mm] = [mm] \vektor [/mm] {1 [mm] \\ [/mm] 0 [mm] \\ [/mm] 0}$

[mm] $\Rightarrow [/mm] V = [mm] \pmat {0&0&1\\1&0&0\\0&1&0} \text{bzw.}~ V^T= \pmat{0&1&0\\0&0&1\\1&0&0}$ [/mm]

[mm] $\Sigma [/mm] = [mm] \pmat{1&0&0\\0&1&0\\0&0&0}$ [/mm]

Matrix U: [mm] $u_i [/mm] = [mm] \frac{1}{\sigma_i} \cdot [/mm] N [mm] \cdot v_i$ [/mm]
[mm] $u_1 [/mm] = [mm] \vektor{1\\0\\0}$ [/mm]
[mm] $u_2 [/mm] = [mm] \vektor{0\\-1\\0}$ [/mm]

so, sehe ich das richtig: [mm] $u_3$ [/mm] kann ich nicht berechnen, da [mm] $\sigma_3 [/mm] = 0$. Also muss ich [mm] $u_1, u_2$ [/mm] zu einer ONB ergänzen, z.B. mit [mm] $u_3 [/mm] = [mm] e_3$ [/mm] ?
Dann wäre
$U = [mm] \pmat{1&0&0\\0&-1&0\\0&0&1}$ [/mm]

Und die Singulärwertzerlegung ist dann einfach noch [mm] $A=USV^T$ [/mm]

Stimmt meine SVD, v.a. die Berechnung meiner Matrix U?

Danke & Gruß, GB

Bezug
                        
Bezug
Singulärwertzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 01:15 So 14.06.2009
Autor: MathePower

Hallo GreatBritain,

> so - ausgeruht mit erholtem hirn also nochmal:
>  
> [mm]N^TN = \pmat {0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1}[/mm]
>  
> Eigenwerte: [mm]\lambda_1 = 1, \lamda_2 = 1, \lambda_3 = 0[/mm]
>  
> Singulärwerte: [mm]\sigma_1 = 1, \sigma_2 = 1, \sigma_3 = 0[/mm]
>  
> Eigenvektoren: zu [mm]\lambda_{1,2}: ~ v_1 = \vektor{0 \\ 1 \\ 0} ~ v_2 = \vektor{0 \\ 0 \\ 1}; \lambda_3: ~v_3 = \vektor {1 \\ 0 \\ 0}[/mm]
>  
> [mm]\Rightarrow V = \pmat {0&0&1\\1&0&0\\0&1&0} \text{bzw.}~ V^T= \pmat{0&1&0\\0&0&1\\1&0&0}[/mm]
>  
> [mm]\Sigma = \pmat{1&0&0\\0&1&0\\0&0&0}[/mm]
>  
> Matrix U: [mm]u_i = \frac{1}{\sigma_i} \cdot N \cdot v_i[/mm]
>  [mm]u_1 = \vektor{1\\0\\0}[/mm]
>  
> [mm]u_2 = \vektor{0\\-1\\0}[/mm]
>  
> so, sehe ich das richtig: [mm]u_3[/mm] kann ich nicht berechnen, da
> [mm]\sigma_3 = 0[/mm]. Also muss ich [mm]u_1, u_2[/mm] zu einer ONB ergänzen,
> z.B. mit [mm]u_3 = e_3[/mm] ?
>  Dann wäre
>  [mm]U = \pmat{1&0&0\\0&-1&0\\0&0&1}[/mm]
>  
> Und die Singulärwertzerlegung ist dann einfach noch
> [mm]A=USV^T[/mm]
>  
> Stimmt meine SVD, v.a. die Berechnung meiner Matrix U?


Ja. [ok]


>  
> Danke & Gruß, GB


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de