www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Sinus + Summe
Sinus + Summe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sinus + Summe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:07 Mi 08.03.2006
Autor: Tequila

Hallo

hab ne Frage bezüglich Grenzwerten

Ich soll ein Integral in Teilsummen zerlegen und dann ausrechnen


[mm] \integral_{0}^{\pi}{sin(x) dx} [/mm]

ich hab rumgerechnet und bin auf folgendes gekommen

[mm] \limes_{n\rightarrow\infty} \summe_{i=1}^{n} sin(\bruch{\pi i}{n}) [/mm] * [mm] \bruch{\pi}{n} [/mm]

Eben in Derive reingehackt, und siehe da, es kommt 2 raus.
Was auch richtig ist!

Aber wie löse ich das per hand?
Geht es ohne Additionstheoreme? Ich glaub nicht. Leider kann ich die nicht auswendig. Gibt es ne andere Methode?


        
Bezug
Sinus + Summe: Ansatz ?
Status: (Antwort) fertig Status 
Datum: 15:38 Mi 08.03.2006
Autor: mathiash

Hallo und guten Nachmittag,

nur mal so ins Blaue:

Geht es vielleicht mit ner Reihenentwicklung von sinus und dann sowas wie einer
Umordnung von Reihen ?

Gruss,

Mathias

Bezug
        
Bezug
Sinus + Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:58 Mi 08.03.2006
Autor: Walde

Hi Benni,

also ich sehe das ähnlich wie Mathias, du musst über die Reihenentwicklung gehen. Die Reihenentwicklung des Sinus, kannst du in jeder Formelsammlung (auch online) nachschauen:
sin(x)= [mm] \summe_{n=1}^{\infty}\bruch{(-1)^{n-1}}{(2n-1)!}x^{2n-1}. [/mm]

Also da das Intergral drauf anwenden und in die Summe reinziehen. Da muss man eigentlich aufpassen, weil die Summe unendlich ist. Da wir aber wissen, dass die unendliche Summe  der Integrale existiert ( und -cos(x) ist) machen wir uns da mal keine Gedanken. Jetzt integriere einfach jeden einzelnen Summanden, d.h. finde allgemein die Stammfkt. von
[mm] \bruch{(-1)^{n-1}}{(2n-1)!}x^{2n-1}. [/mm]
Ich würde mir mal die ersten drei ausschreiben und dann allgemein weitermachen.
Kommen musst du insgesamt auf
[mm] -\summe_{n=0}^{\infty}\bruch{(-1)^{n}}{(2n)!}x^{2n}. [/mm]
Das ist nämlich die Reihenentwicklung von -cos(x), was ja die Sammfkt. von sin(x) ist. Beachte, dass die Summe von n=0 losgeht. Du musst noch selbst ein wenig tüfteln, damit man es sieht, aber du weisst ja was rauskommt, du wirst es schon schaffen :) Setze erst ganz zum Schluss die Grenzen ein.
Ich hoffe so kommst du weiter,
                                                 Walde



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de