www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Sinus Summe
Sinus Summe < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sinus Summe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:06 Fr 25.05.2007
Autor: E-Storm

Aufgabe
Finde eine geschlossene Formel für den Ausdruck

[mm] \summe_{k=0}^{n} [/mm] sin (kx)     (x [mm] \in \IR [/mm]  \ {...,- [mm] 4\pi [/mm] , - 2 [mm] \pi [/mm] , 0 , 2 [mm] \pi [/mm] , 4 [mm] \pi [/mm] , ...}

indem du den Imaginärteil der Summe [mm] \summe_{k=0}^{n} [/mm] und die Formel für die geometrische Reihe betrachtest.  

Ich brauche unbedingt einen Lösungsansatz, ich weiß absolut nicht, wie ich an diese Aufgabe rangehen soll, ich hoffe mir kann da einer helfen. MfG Thomas.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Sinus Summe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:15 Fr 25.05.2007
Autor: kornfeld


> Finde eine geschlossene Formel für den Ausdruck
>
> [mm]\summe_{k=0}^{n}[/mm] sin (kx)     (x [mm]\in \IR[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

  \ {...,- [mm]4\pi[/mm] , -

> 2 [mm]\pi[/mm] , 0 , 2 [mm]\pi[/mm] , 4 [mm]\pi[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

, ...}

>  
> indem du den Imaginärteil der Summe [mm]\summe_{k=0}^{n}[/mm] und
> die Formel für die geometrische Reihe betrachtest.

Welchen Imaginaerteil? So wie du die Reihe schreibst ist sie reell...

Kornfeld

Bezug
                
Bezug
Sinus Summe: Aufgabenstellung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:42 Sa 26.05.2007
Autor: E-Storm

Es soll folgendermaßen lauten :

Finde eine geschlossene Formel für den Ausdruck

"Summe über n für k=0 sin(kx)  x element R \ {. . . ,−4phi,−2phi, 0, 2phi, 4phi, . . .}

indem Du den Imaginärteil der

"Summe über n für k=0  [mm] (e^ix)^k [/mm] "

und die Formel für die geometrische Reihe betrachtest.

Ich hoffe jetzt ist es eindeutig, also ich brauche irgendwie einen Lösungsansatz, mfg Thomas

Bezug
                        
Bezug
Sinus Summe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:26 So 27.05.2007
Autor: kornfeld


> Es soll folgendermaßen lauten :
>  
> Finde eine geschlossene Formel für den Ausdruck
>  
> "Summe über n für k=0 sin(kx)  x element R \ {. . .
> ,−4phi,−2phi, 0, 2phi, 4phi, . . .}

Soll "phi"  [mm] $\pi$ [/mm] sein? Ich vermute auch, dass du Vorzeichen unterschlagen hast (muss es nicht vielleicht [mm] $\sum (-1)^k \sin(kx)$ [/mm] lauten?
Grund fuer meine Vermutung ist die Tatsache, dass der Imaginaerteil von [mm] $\sum e^{ikx}$ [/mm] eben jene alternierende Reihe ist....Ausserdem ist [mm] $\sum \sin(k\frac{\pi}{2})$ [/mm] divergent.

> indem Du den Imaginärteil der
>
> "Summe über n für k=0  [mm](e^ix)^k[/mm] "
>
> und die Formel für die geometrische Reihe betrachtest.
>  
> Ich hoffe jetzt ist es eindeutig, also ich brauche
> irgendwie einen Lösungsansatz, mfg Thomas  

Bezug
                                
Bezug
Sinus Summe: erneuter Versuch
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:48 Mo 28.05.2007
Autor: E-Storm

Also es tut mir Leid, dass die Aufgabenstellung so ein Problem darstellt, aber irgendwie kommt einfach nicht das richtige heraus, wenn ich es einfach kopieren, darum probier ich es jetzt nochmal mit den hier gegebenen Formelsystem hinzubekommn. Also die Aufgabenstellung :

Finde eine geschlossen Formel für den Ausdruck

[mm] \summe_{k=0}^{n} [/mm] sin (kx)        ( x [mm] \in \IR [/mm]  \ {..., -4 [mm] \pi [/mm]  , -2 [mm] \pi [/mm] , 0 , 2 [mm] \pi [/mm] , 4 [mm] \pi [/mm] , ... } )

indem du den Imaginärteil der Summe  [mm] \summe_{k=0}^{n} (e^{ix})^k [/mm]

und die Formel für die geometrische Reihe betrachtest.

So lautet die Aufgabenstellung definitiv, ohne weitere Zusätze oder Ähnlichem, ich hoffe sie können mir nun helfen, im Vorfeld vielen Dank für die Mühe! Thomas


Bezug
                                        
Bezug
Sinus Summe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:42 Mo 28.05.2007
Autor: kornfeld

Jetzt habe ich es verstanden. Ich weiss aber im Augenblick auch keinen Ansatz. Du kannst ja mal versuchen, [mm] $Im(e^{iy})=\sum_{k=0}^\infty \frac{(-1)^{k}y^{2k+1}}{(2k +1)!}$ [/mm] zu benutzen.

LG Kornfeld

Bezug
                                                
Bezug
Sinus Summe: weitere Lsg.
Status: (Frage) überfällig Status 
Datum: 17:02 Di 29.05.2007
Autor: E-Storm

Aufgabe
Finde eine geschlossene Formel für den Ausdruck

[mm] \summe_{k=0}^{n} [/mm] sin (kx)  =   (x [mm] \in \IR [/mm] {..., -4 [mm] \pi [/mm] ,-2 [mm] \pi [/mm] ,0,2 [mm] \pi [/mm] ,4 [mm] \pi [/mm] ,...})

indem du den Imgaginärteil der Summe [mm] \summe_{k=0}^{n} (e^{ix})^k [/mm] und die Formel für die geometrische Reihe betrachtest.  

Also ich hab jetzt die Sinussumme folgendermaßen umgeformt :

[mm] \summe_{k=0}^{n} [/mm] sin (kx) = [mm] \bruch{1}{2i} \summe_{k=0}^{n} e^{ikx} [/mm] - [mm] e^{-ikx} [/mm] )  
=  [mm] \bruch{1}{2i} \summe_{k=0}^{n} [/mm] ( [mm] e^{ix} )^k [/mm]  - [mm] \bruch{1}{2i} \summe_{k=0}^{n} [/mm] ( [mm] e^{-ix})^k [/mm]  

jetzt kann ich die Formel für die geometrische Reihe anwenden, sie lautet

[mm] \summe_{k=0}^{n} q^n [/mm]  = [mm] \bruch{1-q^{n+1}}{1-q} [/mm]   das q wäre in

dem Fall ja   ( [mm] e^{-ix})^k [/mm]   . Kann das eine Lsg des Problems sein ??? Und falls ja wie kann man das elegant umformen, dass eine ansehnlich Form herauskommt???

Bezug
                                                        
Bezug
Sinus Summe: sin(kx)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:23 Di 29.05.2007
Autor: JimMcCann

So,  bin glaube im selben kurs wie du ... sitz also auch an der aufgabe.

Hab ungefähr das selbe probl. wie du und mir ist folgendes aufgefallen:

Du machst doch die Umformung:
sin (kx) = [mm] \bruch{1}{2i} [/mm] ( [mm] e^{ikx} [/mm] - [mm] e^{-ikx} [/mm] )

er meinte allerdings meiner Meinung nach im Tutorium, dass bereits

sin (x) = [mm] \bruch{1}{2i} [/mm] ( [mm] e^{iLx} [/mm] - [mm] e^{-iLx} [/mm] )      L = [mm] \lambda [/mm]

also müsste

sin (kx) = [mm] \bruch{1}{2i} [/mm] ( [mm] e^{ikLx} [/mm] - [mm] e^{-ikLx} [/mm] )

sein. oder ...? und dann hat man da irgenwie ewig viele exponenten.
weißt du was [mm] \lambda [/mm] ist? Ist das ne konstante oder läuft das auch durch?



Bezug
        
Bezug
Sinus Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:56 Sa 09.06.2007
Autor: felixf

Hallo

> Finde eine geschlossene Formel für den Ausdruck
>
> [mm]\summe_{k=0}^{n} \sin (kx)[/mm]     ($x [mm] \in \IR \setminus \{...,-4\pi, - 2\pi , 0 , 2 \pi , 4 \pi , ...\}$ [/mm]
>  
> indem du den Imaginärteil der Summe [mm]\summe_{k=0}^{n} (e^{i x})^k[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

und

> die Formel für die geometrische Reihe betrachtest.

Es ist ja $\sin x = \Im e^{i x}$ fuer $x \in \IR$. Damit ist $\sum_{k=0}^n \sin(k x) = \sum_{k=0}^n \Im e^{i k x} = \Im \sum_{k=0}^n e^{i k x}$, und es ist $\sum_{k=0}^n e^{i k x} = \sum_{k=0}^n (e^{i x})^k = \frac{1 - (e^{i x})^{n+1}}{1 - e^{i x}}$ fuer $e^{i x} \neq 1$ (was aequivalent zu $\cos x = 1$ und $\sin x = 0$ ist; das ist wiederum der Fall, wenn $x = \ell 2 \pi$ fuer ein $\ell \in \IZ$ ist).

So, nun ist also $\sum_{k=0}^n \sin(k x) = \Im \frac{1 - e^{i (n + 1) x}{1 - e^{i x}}$. Nun ist $\frac{1 - e^{i (n + 1) x}}{1 - e^{i x}} = \frac{(1 - e^{i (n + 1) x}) (1 - e^{- i x})}{(1 - e^{i x}) (1 - e^{- i x})} = \frac{1 - e^{i (n + 1) x} - e^{i x} + e^{i ni x}}{2 - (e^{i x} + e^{- i x})} = \frac{1 - e^{i (n + 1) x} - e^{i x} + e^{i n x}}{2 - 2 \cos x}$ und somit $\sum_{k=0}^n \sin(k x) = \Im \frac{1 - e^{i (n + 1) x}{1 - e^{i x}} = \frac{- \Im \sin((n + 1) x) - \sin x - \sin n x}{2 - 2 \cos x}$. (Wenn ich mich jetzt nicht verrechnet hab.)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de