www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Sinus und Cosinus
Sinus und Cosinus < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sinus und Cosinus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:50 So 03.02.2008
Autor: Bodo0686

Aufgabe
Cosinus und Sinus:

a) Beweise die Formel cos(z) = [mm] 2*cos^2(z/2) [/mm] - 1 [mm] \forall [/mm] z [mm] \in \IC [/mm]
b) Beweise die Formel sin(z) = 2*sin(z/2)*cos(z/2) [mm] \forall \in \IC [/mm]
c) Berechne cos [mm] (\pi/4) [/mm] und sin [mm] (\pi/4) [/mm]
d) Zeige (per Induktion) für z [mm] \in \IC [/mm] und n [mm] \in \IN: [/mm]
sin(z) = [mm] 2^n [/mm] * sin * [mm] (z/2^n) [/mm] * cos (z/2) * ... * cos [mm] (z/2^n) [/mm]

Hallo Zusammen,

könnt ihr mir bei obiger Aufgabe behilflich sein? Sitze schon den ganzen morgen daran und komm nicht weiter...

Danke und Grüße


Ich habe diese Aufgabe in keinem weiteren Forum gestellt!

        
Bezug
Sinus und Cosinus: Antwort
Status: (Antwort) fertig Status 
Datum: 15:23 So 03.02.2008
Autor: Somebody


> Cosinus und Sinus:
>  
> a) Beweise die Formel cos(z) = [mm]2*cos^2(z/2)[/mm] - 1 [mm]\forall[/mm] z
> [mm]\in \IC[/mm]
>  b) Beweise die Formel sin(z) = 2*sin(z/2)*cos(z/2)
> [mm]\forall \in \IC[/mm]
>  c) Berechne cos [mm](\pi/4)[/mm] und sin [mm](\pi/4)[/mm]
>  d) Zeige (per Induktion) für z [mm]\in \IC[/mm] und n [mm]\in \IN:[/mm]
>  
> sin(z) = [mm]2^n[/mm] * sin * [mm](z/2^n)[/mm] * cos (z/2) * ... * cos
> [mm](z/2^n)[/mm]
>  
> Hallo Zusammen,
>  
> könnt ihr mir bei obiger Aufgabe behilflich sein? Sitze
> schon den ganzen morgen daran und komm nicht weiter...

Zu a) und b): Was kannst Du denn als bekannt voraussetzen? - Sind die Additionstheoreme für [mm] $\cos$ [/mm] und [mm] $\sin$ [/mm] bekannt? In diesem Falle sind a) und b) einfache Anwendungen dieser Additionstheoreme (plus "trigonometrischer Pythagoras").

[mm]\cos(z)=\cos\big(\tfrac{z}{2}+\tfrac{z}{2}\big)\red{=}\cos^2\big(\tfrac{z}{2}\big)-\sin^2\big(\tfrac{z}{2}\big)=\ldots[/mm]

bzw.

[mm]\sin(z)=\sin\big(\tfrac{z}{2}+\tfrac{z}{2}\big)\red{=}\sin\big(\tfrac{z}{2}\big)\cdot \cos\big(\tfrac{z}{2}\big)+\cos\big(\tfrac{z}{2}\big)\cdot \sin\big(\tfrac{z}{2}\big)=\ldots[/mm]


Aufgrund des sogenannten "Identitätssatzes" für analytische Funktionen genügt es übrigens, solche Sätze (wie das Additionstheorem) für reelle Argumente zu beweisen.

c) vielleicht aus a) und b)?

Bei d) könnte man $n$-mal die Beziehung [mm] $\sin(z)=2\sin\big(\tfrac{z}{2}\big)\cdot\cos\big(\tfrac{z}{2}\big)$ [/mm] anwenden, indem man zuerst einen Summanden [mm] $\tfrac{z}{2}$, [/mm] dann davon einen Summanden [mm] $\tfrac{z}{2^2}$ [/mm] usw. abspaltet:

[mm]\begin{array}{lcl} \sin(z) &=& 2\cdot \sin\big(\tfrac{z}{2}\big)\cdot\cos\big(\tfrac{z}{2}\big)\\ &=& 2\cdot 2\cdot\sin\big(\tfrac{z}{2^2}\big)\cdot\cos\big(\tfrac{z}{2^2}\big)\cdot \cos\big(\tfrac{z}{2}\big)\\ &=&2\cdot 2\cdot 2\sin\big(\tfrac{z}{2^3}\big)\cdot\cos\big(\tfrac{z}{2^3}\big)\cdot\cos\big(\tfrac{z}{2^2}\big)\cdot \cos\big(\tfrac{z}{2}\big)\\ &=& \ldots \end{array}[/mm]

Bei der vorgegebenen Lösung ist lediglich die Reihenfolge der [mm] $\cos\big(\tfrac{z}{2^m}\big)$-Faktoren [/mm] umgekehrt gewählt wie bei der obigen Lösungsskizze: wohl um die Lösung eine Spur weniger offensichtlich zu machen.

Bezug
                
Bezug
Sinus und Cosinus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:44 So 03.02.2008
Autor: Martinius

Hallo,

für c) könnte man auch das Additionstheorem für halbe Winkel nehmen:

https://www.vorhilfe.de/read?i=355309

LG, Martinius

Bezug
                
Bezug
Sinus und Cosinus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:34 So 03.02.2008
Autor: Bodo0686

Hallo,

ok! Habe die Aufgaben soweit gelöst! Nur bei Aufgabe d) soll ja mit Induktion geschehen...

In einer weiteren Aufgabe die über das Vietasches Produkt handelt heißt es:

Zeige mittels Aufgabe d) (sin(x)/x) = [mm] \limes_{n\rightarrow\infty} \produkt_{k=1}^{n} cos(x/2^k)) [/mm] für alle x [mm] \not= [/mm] 0

Bitte um Hilfe!!!

Danke nochmal für die Tipps für a-c-(d) !

Bezug
                        
Bezug
Sinus und Cosinus: Antwort
Status: (Antwort) fertig Status 
Datum: 18:02 So 03.02.2008
Autor: Somebody


> Hallo,
>  
> ok! Habe die Aufgaben soweit gelöst! Nur bei Aufgabe d)
> soll ja mit Induktion geschehen...

Es ist doch kein grosses Problem das ganze noch schön brav per Induktion zu beweisen, wenn man gesehen hat, was die Grundidee ist. Wir behaupten also, dass für alle [mm] $n\in \IN$ [/mm] gilt [mm] $\sin(z)=2^n \sin\big(\tfrac{z}{2^n}\big)\cdot\prod_{k=1}^n\cos\big(\tfrac{z}{2^k}\big)$ [/mm]

1. Induktionsanfang: Die Behauptung gilt für $n=0$, denn es ist

[mm]2^0\cdot\sin\big(\tfrac{z}{2^0}\big)\cdot \prod_{k=1}^0\cos\big(\tfrac{z}{2^k}\big)=1\cdot\sin(z)\cdot 1=\sin(z)[/mm]


2. Induktionsschritt: Die Behauptung gelte für $n$ (Induktionsvoraussetzung), zu zeigen: die Behauptung gilt auch für $n+1$, da

[mm]\begin{array}{lcll} \sin(z) &\blue{=}&2^n \sin\big(\tfrac{z}{2^n}\big) \cdot\prod_{k=1}^n\cos\big(\tfrac{z}{2^k}\big) & \text{(wegen Induktionsvoraussetzung)}\\ &=&2^n \sin\big(\tfrac{z}{2^{n+1}}+\tfrac{z}{2^{n+1}}}\big)\prod_{k=1}^n\cos\big(\tfrac{z}{2^k}\big)\\ &\overset{\text{b)}}{=}&2^n \cdot 2\sin\big(\tfrac{z}{2^{n+1}}}\big)\cos\big(\tfrac{z}{2^{n+1}}}\big)\prod_{k=1}^n\cos\big(\tfrac{z}{2^k}\big)\\ &=& 2^{n+1}\sin\big(\tfrac{z}{2^{n+1}}\big)\prod_{k=1}^{n+1}\cos\big(\tfrac{z}{2^k}\big) &\text{(Behauptung für $n+1$)}\end{array} [/mm]


Induktionsschluss: Aus 1. und 2. folgt, dass die Behauptung für alle [mm] $n\in \IN$ [/mm] gilt.

>  
> In einer weiteren Aufgabe die über das Vietasches Produkt
> handelt heißt es:
>  
> Zeige mittels Aufgabe d) (sin(x)/x) =
> [mm]\limes_{n\rightarrow\infty} \produkt_{k=1}^{n} cos(x/2^k))[/mm] für alle [mm]x \not= 0[/mm]
>  

Folgendes gilt gemäss d) für alle [mm] $n\in \IN$: [/mm]

[mm]\frac{\sin(x)}{x} \overset{\text{d)}}{=} \frac{2^n\sin\big(\tfrac{x}{2^n}\big)\prod_{k=1}^n\cos\big(\tfrac{x}{2^k}\big)}{x}\\ = \frac{\sin\big(\tfrac{x}{2^n}\big)}{\frac{x}{2^n}}\cdot \prod_{k=1}^n\cos\big(\tfrac{x}{2^k}\big)[/mm]

Es ist aber bekanntlich [mm] $\lim_{n\rightarrow\infty}\frac{\sin\big(\tfrac{x}{2^n}\big)}{\frac{x}{2^n}}=1$. [/mm] Somit bleibt dem Produkt [mm] $\prod_{k=1}^n\cos\big(\tfrac{x}{2^k}\big)$ [/mm] gar nichts anderes übrig, als für [mm] $n\rightarrow\infty$ [/mm] gegen den Ausgsgangsterm [mm] $\frac{\sin(x)}{x}$ [/mm] dieser Umformungskette zu gehen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de