www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - Sinus vereinfachen
Sinus vereinfachen < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sinus vereinfachen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:28 Mo 06.04.2009
Autor: itse

Hallo Zusammen,

kann ich diesen Term:

[mm] \wurzel{3} \cdot{} sin(2\pi [/mm] t) - [mm] sin(2\pi [/mm] t + [mm] \bruch{\pi}{2}) [/mm]

nach der Formel für Summen und Differenzen wie folgt:

[mm] \wurzel{3} \cdot{} sin(2\pi [/mm] t) - [mm] sin(2\pi [/mm] t + [mm] \bruch{\pi}{2}) [/mm] =

[mm] \wurzel{3} \cdot{} [/mm] 2 [mm] cos(\bruch{2\pi t + 2\pi t + \bruch{\pi}{2}}{2}) \cdot{} sin(\bruch{2\pi t - (2\pi t + \bruch{\pi}{2})}{2}) [/mm] =

[mm] \wurzel{3} \cdot{} [/mm] 2 [mm] cos(\bruch{4\pi t + \bruch{\pi}{2}}{2}) \cdot{} sin(\bruch{ - \bruch{\pi}{2})}{2}) [/mm]  =  

[mm] \wurzel{3} \cdot{} [/mm] 2 [mm] cos(\bruch{\bruch{8\pi t + \pi}{2}}{2}) \cdot{} sin(\bruch{- \pi}{4}) [/mm] =  

[mm] \wurzel{3} \cdot{} [/mm] 2 [mm] cos(\bruch{8\pi t + \pi}{4}) \cdot{} sin(\bruch{- \pi}{4}) [/mm] =

[mm] -\wurzel{6} [/mm] cos [mm] (2\pi [/mm] t + [mm] \bruch{\pi}{4}) [/mm] =

[mm] -\wurzel{6} [/mm] sin [mm] (2\pi [/mm] t + [mm] \bruch{3\pi}{4}) [/mm]

umformen?

Gruß
itse

        
Bezug
Sinus vereinfachen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:51 Mo 06.04.2009
Autor: MathePower

Hallo itse,

> Hallo Zusammen,
>  
> kann ich diesen Term:
>  
> [mm]\wurzel{3} \cdot{} sin(2\pi[/mm] t) - [mm]sin(2\pi[/mm] t +
> [mm]\bruch{\pi}{2})[/mm]
>  
> nach der Formel für Summen und Differenzen wie folgt:
>  
> [mm]\wurzel{3} \cdot{} sin(2\pi[/mm] t) - [mm]sin(2\pi[/mm] t +
> [mm]\bruch{\pi}{2})[/mm] =


Das geht nicht, da der Faktor vor [mm]sin(2\pi t + \bruch{\pi}{2})[/mm] nicht [mm]\wurzel{3}[/mm] ist.


>
> [mm]\wurzel{3} \cdot{}[/mm] 2 [mm]cos(\bruch{2\pi t + 2\pi t + \bruch{\pi}{2}}{2}) \cdot{} sin(\bruch{2\pi t - (2\pi t + \bruch{\pi}{2})}{2})[/mm]
> =
>
> [mm]\wurzel{3} \cdot{}[/mm] 2 [mm]cos(\bruch{4\pi t + \bruch{\pi}{2}}{2}) \cdot{} sin(\bruch{ - \bruch{\pi}{2})}{2})[/mm]
>  =  
>
> [mm]\wurzel{3} \cdot{}[/mm] 2 [mm]cos(\bruch{\bruch{8\pi t + \pi}{2}}{2}) \cdot{} sin(\bruch{- \pi}{4})[/mm]
> =  
>
> [mm]\wurzel{3} \cdot{}[/mm] 2 [mm]cos(\bruch{8\pi t + \pi}{4}) \cdot{} sin(\bruch{- \pi}{4})[/mm]
> =
>
> [mm]-\wurzel{6}[/mm] cos [mm](2\pi[/mm] t + [mm]\bruch{\pi}{4})[/mm] =
>
> [mm]-\wurzel{6}[/mm] sin [mm](2\pi[/mm] t + [mm]\bruch{3\pi}{4})[/mm]
>  
> umformen?


Was Du hier machen kannst ist:

[mm]\wurzel{3} \cdot{} sin(2\pi t) - sin(2\pi t + \bruch{\pi}{2})=A*\sin\left(2 \pi t+\varphi\right)[/mm]


,wobei sich A und [mm]\varphi[/mm]  durch []Koeffizientenvergleich ergeben.


>  
> Gruß
>  itse


Gruß
MathePower


Bezug
                
Bezug
Sinus vereinfachen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:09 Mo 06.04.2009
Autor: itse

Hallo,

> Was Du hier machen kannst ist:
>  
> [mm]\wurzel{3} \cdot{} sin(2\pi t) - sin(2\pi t + \bruch{\pi}{2})=A*\sin\left(2 \pi t+\varphi\right)[/mm]
>  
>
> ,wobei sich A und [mm]\varphi[/mm]  durch []Koeffizientenvergleich
> ergeben.

Wie müsste man dies dann aufstellen? Etwa so:

[mm] \wurzel{3} \cdot{} sin(2\pi [/mm] t) = 0

[mm] sin(2\pi [/mm] t + [mm] \bruch{\pi}{2}) [/mm] = [mm] A*\sin\left(2 \pi t+\varphi\right) [/mm]

?

Wenn man es sich überlegt, ist der erste Term, egal welches t gewählt wird immer Null, somit müsste doch:

[mm] -sin(2\pi [/mm] t+ [mm] \bruch{\pi}{2}) [/mm]

rauskommen?

Gruß
itse


Bezug
                        
Bezug
Sinus vereinfachen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:24 Mo 06.04.2009
Autor: MathePower

Hallo itse,


> Hallo,
>  
> > Was Du hier machen kannst ist:
>  >  
> > [mm]\wurzel{3} \cdot{} sin(2\pi t) - sin(2\pi t + \bruch{\pi}{2})=A*\sin\left(2 \pi t+\varphi\right)[/mm]
>  
> >  

> >
> > ,wobei sich A und [mm]\varphi[/mm]  durch []Koeffizientenvergleich
> > ergeben.
>  
> Wie müsste man dies dann aufstellen? Etwa so:
>  
> [mm]\wurzel{3} \cdot{} sin(2\pi[/mm] t) = 0
>  
> [mm]sin(2\pi[/mm] t + [mm]\bruch{\pi}{2})[/mm] = [mm]A*\sin\left(2 \pi t+\varphi\right)[/mm]
>  
> ?
>  
> Wenn man es sich überlegt, ist der erste Term, egal welches
> t gewählt wird immer Null, somit müsste doch:
>  
> [mm]-sin(2\pi[/mm] t+ [mm]\bruch{\pi}{2})[/mm]
>  
> rauskommen?


Bevor Du den Koeffizientenvergleich machen kannst,
mußt Du links und rechts das entsprechende Additionstheorem anwenden.

[mm]C*\sin\left( 2\pi t\right)+D*\cos\left(2 \pi t) = E*\sin\left( 2\pi t\right)+F*\cos\left(2 \pi t)[/mm]

, woraus dann folgt:

[mm]C=E[/mm] und [mm]D=F[/mm]


>  
> Gruß
>  itse
>  


Gruß
MathePower

Bezug
                                
Bezug
Sinus vereinfachen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:33 Mo 06.04.2009
Autor: itse

Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo,

danke für deine Antwort. Jedoch werde ich nicht so recht schlau daraus.

Am Anfang hatte ich diesen Term:  \wurzel{3} \cdot{} sin(2\pi t) - sin(2\pi t + \bruch{\pi}{2}), diesen nun mit Hilfe Koeffizientenvergleich vereinfachen, somit:

$ C\cdot{}\sin\left( 2\pi t\right)+D\cdot{}\cos\left(2 \pi t) = E\cdot{}\sin\left( 2\pi t\right)+F\cdot{}\cos\left(2 \pi t) $

, woraus dann folgt:

$ C=E $ und $ D=F $

Also wäre C=E=1 und D=F=1, oder ?

Was bringt mir dies nun bei meinem Term? Ich habe diesen Koeffizientenvergleich noch nie hergenommen, deswegen komme ich nicht so wirklich damit zu recht.


Gruß
tise

Bezug
                                        
Bezug
Sinus vereinfachen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:53 Mo 06.04.2009
Autor: MathePower

Hallo itse,

> Hallo,
>  
> danke für deine Antwort. Jedoch werde ich nicht so recht
> schlau daraus.
>  
> Am Anfang hatte ich diesen Term:  [mm]\wurzel{3} \cdot{} sin(2\pi[/mm]
> t) - [mm]sin(2\pi[/mm] t + [mm]\bruch{\pi}{2}),[/mm] diesen nun mit Hilfe
> Koeffizientenvergleich vereinfachen, somit:
>  
> [mm]C\cdot{}\sin\left( 2\pi t\right)+D\cdot{}\cos\left(2 \pi t) = E\cdot{}\sin\left( 2\pi t\right)+F\cdot{}\cos\left(2 \pi t)[/mm]
>  
> , woraus dann folgt:
>  
> [mm]C=E[/mm] und [mm]D=F[/mm]
>  
> Also wäre C=E=1 und D=F=1, oder ?
>  
> Was bringt mir dies nun bei meinem Term? Ich habe diesen
> Koeffizientenvergleich noch nie hergenommen, deswegen komme
> ich nicht so wirklich damit zu recht.
>  


Nun gut:

[mm]\wurzel{3} \cdot{} sin(2\pi t) - sin(2\pi t + \bruch{\pi}{2})=\wurzel{3} \cdot{} sin(2\pi t) - \cos(2\pi t)[/mm]

Das muss gleich sein mit:

[mm]A*\sin\left(2 \pi t + \varphi)=A*\sin\left(2 \pi t)\cos\left(\varphi\right)+A*\cos\left(2 \pi t)\sin\left(\varphi\right)[/mm]

Hieraus ergibt sich:

[mm]\wurzel{3}=A*\cos\left(\varphi\right)[/mm]

[mm]-1=A*\sin\left(\varphi\right)[/mm]

Daraus folgen dann A und [mm]\varphi[/mm].


>
> Gruß
>  tise


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de