www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Skalare Dgl n-ter Ordn. "Lu=b"
Skalare Dgl n-ter Ordn. "Lu=b" < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skalare Dgl n-ter Ordn. "Lu=b": Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:33 Mo 17.01.2011
Autor: Peon

Aufgabe
Bestimmen Sie die allgemeine Lsg der DGL bzw. die eindeutig best. Lsg. der AWA.
a) u''+2u'+2u=sin(2t), u(0)=u'(0)=1
b) [mm] u''-3u'+2u=e^{2t} [/mm]
c) u''-3u'+2u=t

Hallo,

also ich weiß wie ich eine Lsg zu einer DGL der Form Lu=0 bestimme (Ansatz [mm] e^{\lambda*t}, [/mm] dann Nullstellen des Polynoms bestimmen und dann bildet [mm] u(t)=c_1*e^{\lambda_1*t}+c_2*e^{\lambda_2*t} [/mm] die Lsg.

In der Vorlesung haben wir als Hilfe:
Lu=b
Ansatz: [mm] u(t)=c*e^{\lambda*t} [/mm] => [mm] c*P(\lambda)*e^{\lambda*t}=e^{\lambda*t} [/mm] => [mm] c=\bruch{1}{P(\lambda)}, [/mm] falls [mm] P(\lambda)\not=0, [/mm] wobei [mm] P(\lambda) =\lambda^n+a_{n-1}\lambda^{n-1}+...+a_0 [/mm] ist

Aber irgendwie sehe ich dabei noch nicht die Methode, wie ich die DGL löse.

Bestimmt man erst die Lsg der homogenen Gleichung? Wie erhält man dann die Lsg der gesamten DGL?
Bei der b) habe ich als Lsg der hom. Gl.: [mm] u_h(t)=c_ê^t+c_2e^{2t} [/mm]
Wie geht es jetzt weiter?

DANKE

        
Bezug
Skalare Dgl n-ter Ordn. "Lu=b": Antwort
Status: (Antwort) fertig Status 
Datum: 14:59 Di 18.01.2011
Autor: MathePower

Hallo Peon,

> Bestimmen Sie die allgemeine Lsg der DGL bzw. die eindeutig
> best. Lsg. der AWA.
>  a) u''+2u'+2u=sin(2t), u(0)=u'(0)=1
>  b) [mm]u''-3u'+2u=e^{2t}[/mm]
>  c) u''-3u'+2u=t
>  Hallo,
>  
> also ich weiß wie ich eine Lsg zu einer DGL der Form Lu=0
> bestimme (Ansatz [mm]e^{\lambda*t},[/mm] dann Nullstellen des
> Polynoms bestimmen und dann bildet
> [mm]u(t)=c_1*e^{\lambda_1*t}+c_2*e^{\lambda_2*t}[/mm] die Lsg.
>  
> In der Vorlesung haben wir als Hilfe:
>  Lu=b
>  Ansatz: [mm]u(t)=c*e^{\lambda*t}[/mm] =>


Diesen Ansatz macht man, falls [mm]e^{\lambda*t}[/mm]
keine Lösung der homogenen DGL Lu=0 ist.


> [mm]c*P(\lambda)*e^{\lambda*t}=e^{\lambda*t}[/mm] =>
> [mm]c=\bruch{1}{P(\lambda)},[/mm] falls [mm]P(\lambda)\not=0,[/mm] wobei
> [mm]P(\lambda) =\lambda^n+a_{n-1}\lambda^{n-1}+...+a_0[/mm] ist
>  
> Aber irgendwie sehe ich dabei noch nicht die Methode, wie
> ich die DGL löse.
>  
> Bestimmt man erst die Lsg der homogenen Gleichung? Wie
> erhält man dann die Lsg der gesamten DGL?


Die Lösung einer inhomogenen DGL setzt sich aus
der Lösung der homogenen DGL und einer partikulären
Lösung der inhomogenen DGL zusammen.


>  Bei der b) habe ich als Lsg der hom. Gl.:
> [mm]u_h(t)=c_ê^t+c_2e^{2t}[/mm]
>  Wie geht es jetzt weiter?


Für die partikuläre Lösung wählst Du jetzt den Ansatz [mm]a*t*e^{2*t\[/mm]


>  
> DANKE


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de