www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Skalarprodukt
Skalarprodukt < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skalarprodukt: Aufgabe 1
Status: (Frage) überfällig Status 
Datum: 20:35 Mo 19.06.2006
Autor: Coffein18

Aufgabe
Es sei [mm] \IR³ [/mm] der euklidische Raum mit dem Standardskalarprodukt, W:={( [mm] x_{1} ,x_{2} ,x_{3}) [/mm] | [mm] 2x_{1} -x_{2} +2x_{3})=0} [/mm] und v=(1,2,3).

(i)   Bestimmen Sie W [mm] \perp. [/mm]
(ii)  Bestimmen Sie die orthogonale Projektion von v auf W.
(iii) Bestimmen Sie den Abstand dist(v,W).

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich habe im Algebra (Jänich) keine Idee zur Lösung gefunden und würde mich freuen, wenn ihr mir helfen könntet.

Danke

        
Bezug
Skalarprodukt: Aufgabe 2
Status: (Frage) beantwortet Status 
Datum: 20:46 Mo 19.06.2006
Autor: Coffein18

Aufgabe
(i)  Zeigen Sie, dass durch

     [mm] ((x_{1},x_{2}),(y_{1},y_{2})):=2x_{1}y_{1}+x_{2}y_{2}-x_{1}y_{2}-x_{2}y_{1} [/mm]

     ein Skalarprodukt auf dem Vektrorraum [mm] \IR^2 [/mm] definiert wird.

(ii) Bestimmen Sie eine Orthonormalbasis von [mm] \IR^2 [/mm] bzgl. dieses Skalarprodukts.

Ich habe die Frage noch in keinem anderen Forum gepostet.

Bezug
                
Bezug
Skalarprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 20:54 Mo 19.06.2006
Autor: Franzie

Hallöchen!

Also für deinen Beweis brauchst du im Prinzip nur die Definition für das Skalarprodukt nachrechnen. Du zeigst also jeweils die Linearität in der ersten und zweiten Komponente und anschließend das diese Bilinearform symmetrisch und positiv definit ist und schon hast du es.

liebe Grüße

Bezug
                        
Bezug
Skalarprodukt: Danksagung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:56 Mo 19.06.2006
Autor: Coffein18

Hi Franzi,

danke für den Tipp. Es ist also wieder eine von den Standardsachen...

MfG Daniel

Bezug
                
Bezug
Skalarprodukt: Aufgabe 3
Status: (Frage) beantwortet Status 
Datum: 20:54 Mo 19.06.2006
Autor: Coffein18

Aufgabe
Es sei V = C[a,b] der Vektorraum aller stetigen Funktionen [mm] f:[a,b]\to\IR. [/mm] Zeigen Sie, dass durch [mm] :=\integral_{a}^{b}{f(x)g(x) dx} [/mm]
ein Skalarprodukt auf V definiert wird.


Ich habe die Frage in keinen anderen Forum gepostet.

Bezug
                        
Bezug
Skalarprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 11:48 Di 20.06.2006
Autor: M.Rex


> Es sei V = C[a,b] der Vektorraum aller stetigen Funktionen
> [mm]f:[a,b]\to\IR.[/mm] Zeigen Sie, dass durch
> [mm]:=\integral_{a}^{b}{f(x)g(x) dx}[/mm]
>  ein Skalarprodukt
> auf V definiert wird.
>  

Hier musst du nur die Eigenschaften des Skalarproduktes nachrechnen.
Also, Bilinearität, Positive Definitheit und dass das Skalarprodunkt hermitesch ist.

Was das im einzelnen bedeutet, kannst du []hier nachschlagen.

> Ich habe die Frage in keinen anderen Forum gepostet.

Marius

Bezug
        
Bezug
Skalarprodukt: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Fr 23.06.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de