www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Skalarprodukt auflösen
Skalarprodukt auflösen < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skalarprodukt auflösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:00 Mi 19.05.2010
Autor: frato

Hallo Leute,
Wir müssen im Studium eine Doppelstunde über ein uns zugeteiltes Thema aus einem Buch ("Ebene Geometrie" von M. Koecher und A. Krieg) halten. Ich bin momentan dabei meine Stunde vorzubereiten. Jetzt hätte ich aber mal zwei Fragen (ich denke es werden noch weitere Folgen ;-) ):

1. <c-a,c-b> = [mm] |c|^{2} [/mm] - <a+b,c> + <a,b> = |c- [mm] \bruch{1}{2}(a+b)|^{2} [/mm] - [mm] \bruch{1}{4}|a-b|^{2} [/mm]

Der erste Schritt ist mir hier schon klar. Aber wie komme ich auf das Hintere? Ich glaube ich stehe aufm Schlauch.

Und 2.In meinen Unterlagen heißt es: Die bekannte Formel [mm] sin3w=3sinw-4sin^{3}w [/mm] schreibt sich auch in der Form [mm] sin3w=4*sinw*[sin^{2}\bruch{\pi}{3} [/mm] - [mm] sin^{2}w]. [/mm] Ich kenne diese Formel nicht (zumindest denke ich das)...kann mir da jemand weiter helfen und wie komme ich auf die andere Form?

Vielen Dank schonmal für eure Hilfe.

        
Bezug
Skalarprodukt auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:04 Do 20.05.2010
Autor: Marcel

Hallo,

> Hallo Leute,
>  Wir müssen im Studium eine Doppelstunde über ein uns
> zugeteiltes Thema aus einem Buch ("Ebene Geometrie" von M.
> Koecher und A. Krieg) halten. Ich bin momentan dabei meine
> Stunde vorzubereiten. Jetzt hätte ich aber mal zwei Fragen
> (ich denke es werden noch weitere Folgen ;-) ):
>  
> 1. <c-a,c-b> = [mm]|c|^{2}[/mm] - <a+b,c> + <a,b> = |c-
> [mm]\bruch{1}{2}(a+b)|^{2}[/mm] - [mm]\bruch{1}{4}|a-b|^{2}[/mm]
>  
> Der erste Schritt ist mir hier schon klar. Aber wie komme
> ich auf das Hintere? Ich glaube ich stehe aufm Schlauch.

rechne es "zurück" (von rechts nach links):
[mm] $$|c-\frac{1}{2}(a+b)|^2-\frac{1}{4}|a-b|^2=\langle c-\frac{1}{2}(a+b),\,c-\frac{1}{2}(a+b)\rangle-\frac{1}{4}\langle a-b,\,a-b\rangle=\ldots$$ [/mm]
  

> Und 2.In meinen Unterlagen heißt es: Die bekannte Formel
> [mm]sin3w=3sinw-4sin^{3}w[/mm] schreibt sich auch in der Form
> [mm]sin3w=4*sinw*[sin^{2}\bruch{\pi}{3}[/mm] - [mm]sin^{2}w].[/mm] Ich kenne
> diese Formel nicht (zumindest denke ich das)...kann mir da
> jemand weiter helfen und wie komme ich auf die andere
> Form?

Es ist [mm] $\sin(x)=\text{Im}(e^{ix})$ [/mm] ($x [mm] \in \IR$). [/mm] Ferner gilt
[mm] $$e^{i*(3w)}=(e^{iw})^3=(\cos(w)+i\sin(w))^3=\cos^3(w)+3\cos^2(w)*i\sin(w)+3\cos(w)(i \sin(w))^2+(i\sin(w))^3\,.$$ [/mm]
Durch weiteres ausrechnen und umsortieren nach Real- und Imaginärteil folgt
[mm] $$\text{Im}(e^{i*3w})=3\cos^2(w)\sin(w)-\sin^3(w)=\sin(w)(3\cos^2(w)-\sin^2(w))=\sin(w)(3\cos^2(w)+3\sin^2(w)-4\sin^2(w))\,,$$ [/mm]
und mit [mm] $\sin^2(w)+\cos^2(w)=|e^{iw}|^2=1$ [/mm] folgt
[mm] $$(\*)\;\;\;\sin(3w)=\text{Im}(e^{i*3w})=\sin(w)(3-4\sin^2(w))=3\sin(w)-4\sin^3(w)\,.$$ [/mm]

Um nun auch
[mm] $$\sin(3w)=4\cdot{}\sin(w)\cdot{}[\sin^{2}\left(\bruch{\pi}{3}\right) [/mm] - [mm] \sin^{2}(w)]$$ [/mm]
einzusehen, reicht es wegen
[mm] $$4\cdot{}\sin(w)\cdot{}[\sin^{2}\left(\bruch{\pi}{3}\right) [/mm] - [mm] \sin^{2}w]=4*\sin^2(\pi/3)\sin(w)-4\sin^3(w)\,,$$ [/mm]
und einem Blick in [mm] $(\*)$, [/mm] nachzuweisen, dass
[mm] $$4*\sin^2(\pi/3)=3$$ [/mm]
gilt.

Wenn man das nicht weiß, kann man sich (mit der Interpretation des Sinus bzw. Kosinus) im Einheitskreis überlegen, dass [mm] $\cos(\pi/3)=1/2$ [/mm] ist (Herleitung: betrachte ein rechtwinkliges Dreieck mit einem 60°-Winkel (entspricht Bogenmaß [mm] $\pi/3$) [/mm] und überlege Dir, dass durch Spiegelung dieses Dreiecks an der Kathete, wo der 30°-Winkel anliegt, ein gleichseitiges entsteht). Wegen [mm] $\sin^2(\pi/3)+\cos^2(\pi/3)=1$ [/mm] ist [mm] $\sin^2(\pi/3)=1-\cos^2(\pi/3)=1-(1/4)=3/4$ [/mm] und daher
[mm] $$4*\sin^2(\pi/3)=4*(3/4)=3\,.$$ [/mm]

Beste Grüße,
Marcel

Bezug
                
Bezug
Skalarprodukt auflösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:30 Mo 24.05.2010
Autor: frato

Super! Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de