www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Skalarprodukt überprüfen
Skalarprodukt überprüfen < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skalarprodukt überprüfen: Skalarprodukt
Status: (Frage) beantwortet Status 
Datum: 18:52 So 12.08.2012
Autor: derneue123

Aufgabe
p = [mm] p2(x^2)+p1(x)+p0 [/mm]   und   q= [mm] q2(x^2)+q1(x)+q0 [/mm]

Zeigen Sie dass die Abbildung <. , . >: R<=2[x] X R<=2[x] --> R, <p,q>= p2*q0+p1q1+p0q2  kein Skalarprodukt auf R<= 2[x] ist.

Hallo,

ich habe die obige aufgabe als HA zu lösen. Weiß jedoch nicht, wie ich die Bedingungen der Skalarprodukte auf die Aufgabe anzuwenden habe.
Es wäre sehr nett wenn mir jemand unter die Arme greifen könnte.
Besten dank und Grüße

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Skalarprodukt überprüfen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:27 So 12.08.2012
Autor: Schadowmaster

moin,

Ein Skalarprodukt muss mehrere Eigenschaften erfüllen.
Als Beispiel mache ich mal die Symmetrie:
Es muss für alle $p,q [mm] \in \IR_{\leq 2}[x]$ [/mm] gelten:
[mm] $\langle [/mm] p,q [mm] \rangle [/mm] = [mm] \langle [/mm] q,p [mm] \rangle$ [/mm]
Haben $p,q$ die von dir angegebene Form so betrachten wir mal [mm] $\langle [/mm] q,p [mm] \rangle$: [/mm]
[mm] $\langle [/mm] q,p [mm] \rangle [/mm] = [mm] q_2p_0 [/mm] + [mm] q_1p_1 [/mm] + [mm] q_0p_2 [/mm] = [mm] p_2q_0 [/mm] + [mm] p_1q_1 [/mm] + [mm] p_0q_2 [/mm] = [mm] \langle [/mm] p,q [mm] \rangle$. [/mm]
Da $p,q$ absoult beliebig aus dem Vektorraum gewählt waren ist damit gezeigt, dass diese Abbildung symmetrisch ist.
Nun kannst du auf ähnliche Art und Weise versuchen die anderen Bedingungen nachzuweisen.
Bei (mindestens) einer wirst du Probleme bekommen, da könnte es dann ratsam sein ein Gegenbeispiel zu suchen.


lg

Schadow

Bezug
                
Bezug
Skalarprodukt überprüfen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:59 So 12.08.2012
Autor: derneue123

Aufgabe
Linearität

Danke für die schnelle Antwort, diese Überprüfungen habe ich gemacht jedoch kriege ich es mit der Linearität nicht so auf die reihe. Da habe ich anscheinend einen Denkfehler.
Hast du vielleich einen Ansatz, auf den ich vielleich aufbauen könnte?
beste Grüße


Bezug
                        
Bezug
Skalarprodukt überprüfen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:37 Mo 13.08.2012
Autor: fred97


> Linearität
>  Danke für die schnelle Antwort, diese Überprüfungen
> habe ich gemacht jedoch kriege ich es mit der Linearität
> nicht so auf die reihe. Da habe ich anscheinend einen
> Denkfehler.
> Hast du vielleich einen Ansatz, auf den ich vielleich
> aufbauen könnte?

Folgt denn aus <p,p>=0 stets p= Nullpolynom ?

FRED


>  beste Grüße
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de