www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Skalarprodukte
Skalarprodukte < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skalarprodukte: Frage
Status: (Frage) beantwortet Status 
Datum: 16:30 Mo 01.08.2005
Autor: Britta82

HI,


kennt jemand von euch ein Skalaprodukt auf dem Raum (Z/nZ)³?

Kann ich auf endlichen Räumen überhaupt Skalarprodukte definieren? Das Standardskalarprodukt geht doch nicht oder?

Danke für die Hilfe

Britta

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Skalarprodukte: Meine bescheidene Meinung...
Status: (Antwort) fertig Status 
Datum: 17:33 Mo 01.08.2005
Autor: MatthiasKr

Hallo Britta,

eine interessante Frage, die du da stellst.... ;-)

also ich gehe mal davon aus, du setzt $n$ so voraus, dass [mm] $\IZ [/mm] / [mm] n\IZ$ [/mm] ein Körper ist, also zB. wenn $n$ prim ist.
meiner meinung nach kann man auf so einem körper kaum sinnvoll ein skalarprodukt definieren. es müsste ja eine abbildung in den körper sein, und wie will man beispielsweise in [mm] $\IZ [/mm] / [mm] p\IZ$ [/mm] positivität definieren? auch eine norm über die wurzel zu definieren (wie es in hilberträumen üblich ist), scheint mir wenig sinnvoll bis komplett schwachsinnig zu sein...

also vielleicht gibt es irgendwelche akademischen versuche, solche skalarprodukte zu definieren, aber sinnvoll ist es meiner meinung nach nicht.

viele grüße
Matthias

Bezug
                
Bezug
Skalarprodukte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:59 Mo 01.08.2005
Autor: Britta82

Hi,
vielen Dank für die Hilfe.



Bezug
        
Bezug
Skalarprodukte: Antwort
Status: (Antwort) fertig Status 
Datum: 21:06 Mo 01.08.2005
Autor: Stefan

Hallo Britta!

Ich stimme Matthias hier vollkommen zu:

Als Mindestvoraussetzung braucht man einen angeordneten Körper. Da aber jeder angeordnete Körper ein isomorphes Bild von [mm] $\IQ$ [/mm] enthält (insbesondere also die Charakteristik $0$ hat), können endliche Körper nicht angeordnet werden. Auf endlichen Körpern machen also Skalarprodukte keinen Sinn (dagegen schon Bilinearformen, auch so Begriffe wie "nicht-ausgeartet").

Viele Grüße
Stefan

Bezug
                
Bezug
Skalarprodukte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:17 Di 02.08.2005
Autor: Britta82

Danke für die Hilfe,

LG
Britta

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de