www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Skatspiel
Skatspiel < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skatspiel: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:18 Di 17.01.2006
Autor: Crispy

Aufgabe
Wie wahrscheinlich hat jeder von 3 Skatspielern genau einen Buben?
(32 Karten, davon 4 Buben, Spieler ziehen hintereinander jeweils 10mal, zwei verbleibende Karten bilden den Skat.)

Hallo,

es geht um oben genannte Aufgabe.

Möglichkeiten die Karten zu verteilen sind ja:
[mm] {32 \choose 10} \cdot {22 \choose 10} \cdot {12 \choose 10} [/mm]

Der erste Bube hat 10 mögliche Positionen, ebenso, der Zweite und der Dritte, im Skat gibt es 2 Möglichkeiten.

Aber [mm] \frac{10 \cdot 10 \cdot 10 \cdot 2}{ {32 \choose 10} \cdot {22 \choose 10} \cdot {12 \choose 10}} [/mm] kann ja nicht die Lösung sein.
Irgendwo hab ich einen ganz großen Denkfehler. (vermutlich vom Kopfweh bedingt).

Mir schwirren noch die bedingten Wahrscheinlichkeiten
B1= Spieler 1 hat einen Buben
B2= Spieler 2 hat einen, usw.
und die hypergeometrische Verteilung im Kopf rum.

Kann mir jemand verraten, was hier zum Sieg hilft.

Viele Grüße,
Crispy

        
Bezug
Skatspiel: Antwort
Status: (Antwort) fertig Status 
Datum: 14:31 Di 17.01.2006
Autor: Astrid

Hallo Crispy,

> Möglichkeiten die Karten zu verteilen sind ja:
>  [mm]{32 \choose 10} \cdot {22 \choose 10} \cdot {12 \choose 10}[/mm]

[daumenhoch]

>  
> Der erste Bube hat 10 mögliche Positionen, ebenso, der
> Zweite und der Dritte, im Skat gibt es 2 Möglichkeiten.
>  
> Aber [mm]\frac{10 \cdot 10 \cdot 10 \cdot 2}{ {32 \choose 10} \cdot {22 \choose 10} \cdot {12 \choose 10}}[/mm]
> kann ja nicht die Lösung sein.

Das hast du schon richtig erkannt.

Wie viele Möglichkeiten gibt es denn, die Karten so aufzuteilen, dass jeder Spieler genau einen der 4 Buben und 9 der 28 anderen Karten bekommt? Denke dabei an die hypergeometrische Verteilung!

Es gibt:

[mm]{28 \choose 9} \cdot {4 \choose 1} \cdot {19 \choose 9} \cdot {3 \choose 1} \cdot {10 \choose 9} \cdot {2 \choose 1} [/mm]

Möglichkeiten. Klar, wieso?

Viele Grüße
Astrid

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de