Sommerloch < Knobelaufgaben < Café VH < Internes < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:31 Mi 20.07.2011 | Autor: | felixf |
Aufgabe | Gegeben seien Zahlen [mm] $x_1, \dots, x_n [/mm] > 0$ (sie müssen nicht positiv sein, es reicht aus wenn alle Nenner im untenstehenden Ausdruck [mm] $\neq [/mm] 0$ sind). Betrachte den Ausdruck
$1 - [mm] \sum_{i=1}^n \frac{x_i}{\biggl( 1 + \sum_{j=1}^i x_j \biggr) \biggl( 1 + \sum_{j=1}^{i-1} x_j \biggr)}$
[/mm]
Edit: in der 1. Version war der Summand der beiden Summen im Nenner [mm] $x_i$ [/mm] und nicht [mm] $x_j$. [/mm] Das war ein Versehen meinerseits.
Finde einen möglichst einfachen rationalen Ausdruck in [mm] $\sum_{i=1}^n x_i$, [/mm] der mit diesem Ausdruck übereinstimmt, und beweise dies. |
Dieser nette Ausdruck ist mir gestern begegnet, als ich eine Aussage bewiesen hab. Das Ergebnis ist - finde ich - sehr überraschend und lässt sich einfach mit vollständiger Induktion beweisen. Und den Ausdruck zu finden ist auch nicht sehr schwer.
Viel Spass! :)
LG Felix
|
|
|
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 16:32 Mi 20.07.2011 | Autor: | felixf |
Dummy.
|
|
|
|
|
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Schreibfaul wie ich bin definiere ich erstmal:
$a(n) := 1 - \sum_{i=1}^n \frac{x_i}{\biggl( 1 + \sum_{j=1}^i x_i \biggr) \biggl( 1 + \sum_{j=1}^{i-1} x_i \biggr)} $
Behauptung:
$a(n) = \frac{1}{1 + \sum_{i=1}^n x_i$ $\forall n \in \IN$
Beweis durch vollständige Induktion nach $n \in \IN$:
(IA): n = 1
$a(1) = 1 - \frac{x_1}{x_1 + 1}$ (leere Summe nach Def. gleich 0) $= 1 - \frac{x_1 + 1 -1}{x_1 + 1} = 1 - 1 + \frac{1}{1 + x_1} = \frac{1}{1 + x_1}$
(IV): Es sei $a(n) = \frac{1}{1 + \sum_{i=1}^n x_i}$ für ein $n \in \IN$.
(IS): n -> n+1:
$a(n+1) = 1 - \sum_{i=1}^{n+1} \frac{x_i}{\biggl( 1 + \sum_{j=1}^i x_i \biggr) \biggl( 1 + \sum_{j=1}^{i-1} x_i \biggr)}$
$= 1 - \sum_{i=1}^n \frac{x_i}{\biggl( 1 + \sum_{j=1}^i x_i \biggr) \biggl( 1 + \sum_{j=1}^{i-1} x_i \biggr)} - \frac{x_{n+1}}{\biggl( 1 + \sum_{j=1}^{n+1} x_i \biggr) \biggl(1 + \sum_{j=1}^n x_i \biggr)$
$\stackrel{(IV)}{=} \frac{1}{1 + \sum_{i=1}^n x_i} - \frac{x_{n+1}}{\biggl( 1 + \sum_{j=1}^{n+1} x_i \biggr) \biggl(1 + \sum_{j=1}^n x_i \biggr)}$
$= \frac{1 - x_{n+1} + \sum_{i = 1}^{n+1} x_i }{\biggl( 1 + \sum_{j=1}^{n+1} x_i \biggr) \biggl(1 + \sum_{j=1}^n x_i \biggr)}$
$= \frac{1 + \sum_{i = 1}^{n} x_i }{\biggl( 1 + \sum_{j=1}^{n+1} x_i \biggr) \biggl(1 + \sum_{j=1}^n x_i \biggr)}$
$= \frac{1}{1 + \sum_{j=1}^{n+1} x_i }$
q.e.$\square$
|
|
|
|
|
> Ist nicht so schwer gewesen, oder?
nope, a(1), a(2) ausrechnen, ein wenig hin- und herschubsen und dann muss man beim Induktionsschritt genau das gleiche System im allgemeinen anwenden.
> Ich find es trotzdem immer noch sehr faszinierend, dass sich ein auf den > ersten Blick so komplizierter Ausdruck so schoen vereinfacht...
durchaus, ja
Wenn du die Aufgabe einfach so gestellt hättest hätte ich vermutet, dass du von der schönen Lösung aus ein wenig was hinzugefügt hättest um die böse Form zu erhalten (so wie die Schulbuchautoren das immer machen^^).
Gibts denn auch eine parallele logische Vereinfachung des Problems?
Also kannst du jetzt, wo du die schöne Form hast, sagen: "ah ja, die Aussage hätte ich ja auch viel einfacher auf diesem Weg beweisen können" oder braucht der Beweis der Aussage wirklich die komplizierte Form und kann mit der einfachen (auf den ersten Blick) nichts anfangen?
Das würde das ganze nämlich noch weit faszinierender machen.^^
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:30 Mi 20.07.2011 | Autor: | felixf |
Moin,
> > Ich find es trotzdem immer noch sehr faszinierend, dass
> sich ein auf den > ersten Blick so komplizierter Ausdruck
> so schoen vereinfacht...
>
> durchaus, ja
> Wenn du die Aufgabe einfach so gestellt hättest hätte
> ich vermutet, dass du von der schönen Lösung aus ein
> wenig was hinzugefügt hättest um die böse Form zu
> erhalten (so wie die Schulbuchautoren das immer machen^^).
>
> Gibts denn auch eine parallele logische Vereinfachung des
> Problems?
nicht das ich wuesste...
> Also kannst du jetzt, wo du die schöne Form hast, sagen:
> "ah ja, die Aussage hätte ich ja auch viel einfacher auf
> diesem Weg beweisen können" oder braucht der Beweis der
> Aussage wirklich die komplizierte Form und kann mit der
> einfachen (auf den ersten Blick) nichts anfangen?
> Das würde das ganze nämlich noch weit faszinierender
> machen.^^
Diese Gleichung hab ich bekommen, als ich versucht habe etwas anderes zu beweisen. Und zwar: wenn du die linear unabhaengigen Vektoren [mm] $v_i [/mm] = [mm] \lambda_i e_i [/mm] + [mm] e_n$, [/mm] $1 [mm] \le [/mm] i < n$ betrachtest, mit [mm] $e_1, \dots, e_n$ [/mm] den Standardeinheitsvektoren im [mm] $\IR^n$. [/mm] Ich wollte jetzt schauen, ob man die Gram-Schmidt-Orthogonalisierung von [mm] $(v_1, \dots, v_{n-1})$ [/mm] explizit beschreiben kann. Etwas Herumgerechne in Maple (fuer $n = 5$) hat mir eine Vermutung gegeben, wie die Orthogonalisierung aussehen koennte. Dann hab ich versucht diese per Induktion nach $i$ zu beweisen. Und im Beweis tauchte dann ploetzlich diese Identitaet (mit $i$ anstelle $n$) auf, die gelten muss, damit der Beweis stimmt.
Ich hatte erst gedacht dass da ein Fehler drin ist, aber etwas nachrechnen hat dann gezeigt, dass diese Identitaet doch zu stimmen scheint. Und dann hab ich versucht sie zu beweisen (ebenfalls per Induktion), und siehe da es hat super geklappt
LG Felix
|
|
|
|
|
> Diese Gleichung hab ich bekommen, als ich versucht habe
> etwas anderes zu beweisen. Und zwar: wenn du die linear
> unabhaengigen Vektoren [mm]v_i = \lambda_i e_i + e_n[/mm], [mm]1 \le i < n[/mm]
> betrachtest, mit [mm]e_1, \dots, e_n[/mm] den
> Standardeinheitsvektoren im [mm]\IR^n[/mm].
Gibt es einen speziellen Grund, dass du i=n ausschließt?
Die wären doch immernoch linear unabhängig wenn du [mm] $v_n$ [/mm] mit rein nimmst, oder?
Davon abgesehen nehme ich mal an [mm] $\lambda_i \in \IR, \lambda_i \not= [/mm] 0$ $ [mm] \forall [/mm] 1 [mm] \leq [/mm] i < n$ ?
> Ich wollte jetzt
> schauen, ob man die Gram-Schmidt-Orthogonalisierung von
> [mm](v_1, \dots, v_{n-1})[/mm] explizit beschreiben kann.
Hmm, Gram-Schmidt, das hatte ich erst vor zwei Wochen in der Vorlesung.^^
"explizit beschreiben" heißt du willst die Summe auflösen?
Ich glaub ich werd morgen mal ein wenig drann rumbasteln, klingt auf jeden Fall interessant.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:58 Mi 20.07.2011 | Autor: | felixf |
Moin,
> > Diese Gleichung hab ich bekommen, als ich versucht habe
> > etwas anderes zu beweisen. Und zwar: wenn du die linear
> > unabhaengigen Vektoren [mm]v_i = \lambda_i e_i + e_n[/mm], [mm]1 \le i < n[/mm]
> > betrachtest, mit [mm]e_1, \dots, e_n[/mm] den
> > Standardeinheitsvektoren im [mm]\IR^n[/mm].
>
> Gibt es einen speziellen Grund, dass du i=n ausschließt?
> Die wären doch immernoch linear unabhängig wenn du [mm]v_n[/mm]
> mit rein nimmst, oder?
nur falls [mm] $\lambda_n \neq [/mm] -1$ ist
Das Problem ist dann aber, dass die Formel fuer die GS-Orthogonalisierung fuer [mm] $v_n$ [/mm] nicht mehr funktioniert.
> Davon abgesehen nehme ich mal an [mm]\lambda_i \in \IR, \lambda_i \not= 0[/mm]
> [mm]\forall 1 \leq i < n[/mm] ?
Ja, das hatte ich vergessen dazuzuschreiben.
> > Ich wollte jetzt
> > schauen, ob man die Gram-Schmidt-Orthogonalisierung von
> > [mm](v_1, \dots, v_{n-1})[/mm] explizit beschreiben kann.
>
> Hmm, Gram-Schmidt, das hatte ich erst vor zwei Wochen in
> der Vorlesung.^^
> "explizit beschreiben" heißt du willst die Summe
> auflösen?
Wenn [mm] $(\hat{v}_1, \dots, \hat{v}_{n-1})$ [/mm] die GS-Orthogonalisierung ist, dann will ich eine explizite Formel fuer [mm] $\hat{v}_i$ [/mm] haben. Das Ergebnis ist uebrigens [mm] $\hat{v}_i [/mm] = [mm] \lambda_i e_i [/mm] + [mm] \frac{1}{1 + \sum_{j=1}^{i=1} \lambda_j^{-2}} \biggl( -\sum_{j=1}^{i-1} \lambda_j^{-1} e_j [/mm] + [mm] e_n \biggr)$, [/mm] und [mm] $\|\hat{v}_i\|_2^2 [/mm] = [mm] \lambda_i^2 \cdot \frac{1 + \sum_{j=1}^i \lambda_j^{-2}}{1 + \sum_{j=1}^{i-1} \lambda_j^{-2}}$.
[/mm]
Die Identitaet wird uebrigens mit [mm] $x_j [/mm] = [mm] \lambda_j^{-2}$ [/mm] verwendet.
> Ich glaub ich werd morgen mal ein wenig drann rumbasteln,
> klingt auf jeden Fall interessant.
Viel Spass
LG Felix
|
|
|
|
|
hmm, ist doch schonmal deutlich happiger als deine Megasumme.^^
Ich hab mir deine Lösung mal nicht genau angeguckt, soll ja interessant bleiben und ich glaube wenn ich mit den Klausuren durch bin (Anfang-Mitte August) werd ich da mal wirklich ein, zwei oder wie viel Tage auch immer ich dafür brauche in eine wirklich schöne Lösung (Ziel: eine, die ohne deine Megasumme auskommt^^) investieren, also falls ich was schönes finden sollte schreib ich dir dann. ;)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:42 Do 21.07.2011 | Autor: | felixf |
Moin,
> hmm, ist doch schonmal deutlich happiger als deine
> Megasumme.^^
ja, aber im Endeffekt auch nicht so schlimm. Man muss da etwas organisiert rangehen. Ich hab aus der Formel fuer [mm] $\hat{v}_i$ [/mm] eine schoene Formel fuer [mm] $\langle \hat{v}_i, \hat{v}_i \rangle$ [/mm] hergeleitet, naemlich [mm] $\langle \hat{v}_i, \hat{v}_i \rangle [/mm] = [mm] \lambda_i^2 \cdot \frac{1 + \sum_{j=1}^i \lambda_j^{-2}}{1 + \sum_{j=1}^{i-1} \lambda_j^{-2}}$. [/mm] Mit dieser habe ich dann [mm] $\pi_k(\hat{v}_{i+1})$ [/mm] angeschaut fuer $1 [mm] \le [/mm] k [mm] \le [/mm] n$, wobei [mm] $\pi_k [/mm] : [mm] \IR^n \to \IR$ [/mm] die Projektion auf die $k$-te Komponente ist, und hab die Formel fuer [mm] $\hat{v}_{i+1}$ [/mm] somit fuer jede Komponente einzelnd nachgerechnet. Fuer die Komponenten $1 [mm] \le [/mm] k [mm] \le [/mm] i$ und $k = n$ habe ich jeweils die "Megasumme" verwendet.
> Ich hab mir deine Lösung mal nicht genau angeguckt, soll
> ja interessant bleiben und ich glaube wenn ich mit den
> Klausuren durch bin (Anfang-Mitte August) werd ich da mal
> wirklich ein, zwei oder wie viel Tage auch immer ich dafür
> brauche in eine wirklich schöne Lösung (Ziel: eine, die
> ohne deine Megasumme auskommt^^) investieren, also falls
> ich was schönes finden sollte schreib ich dir dann. ;)
Viel Erfolg
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:15 Do 21.07.2011 | Autor: | felixf |
Hallo,
alle die sich die Antwort hier durchlesen: bitte beachten dass sie auch ein paar vertauschte Indices enthaelt, wie meine urspruengliche Frage. Abgesehen davon ist die Rechnung aber korrekt
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:57 Mi 20.07.2011 | Autor: | reverend |
Hallo Felix,
nur um sicherzugehen:
> Gegeben seien Zahlen [mm]x_1, \dots, x_n > 0[/mm] (sie müssen nicht
> positiv sein, es reicht aus wenn alle Nenner im
> untenstehenden Ausdruck [mm]\neq 0[/mm] sind). Betrachte den
> Ausdruck
>
> [mm]1 - \sum_{i=1}^n \frac{x_i}{\biggl( 1 + \sum_{j=1}^i x_i \biggr) \biggl( 1 + \sum_{j=1}^{i-1} x_i \biggr)}[/mm]
>
> Finde einen möglichst einfachen rationalen Ausdruck in
> [mm]\sum_{i=1}^n x_i[/mm], der mit diesem Ausdruck übereinstimmt,
> und beweise dies.
Ist es richtig, dass in beiden Klammern im Nenner [mm] x_i [/mm] in der Summe steht und nicht [mm] x_j? [/mm] Und wird für i=1 die rechte Summe im Nenner als "leer" behandelt, hat also den Wert 0?
Wenn ja, dann müsste für n=2 der Term ausgeschrieben ja so lauten:
[mm] 1-\bruch{x_1}{1+x_1}-\bruch{x_2}{(1+2x_2)(1+x_2)}
[/mm]
Richtig so?
Grüße
reverend
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:13 Do 21.07.2011 | Autor: | felixf |
Moin rev,
> nur um sicherzugehen:
>
> > Gegeben seien Zahlen [mm]x_1, \dots, x_n > 0[/mm] (sie müssen nicht
> > positiv sein, es reicht aus wenn alle Nenner im
> > untenstehenden Ausdruck [mm]\neq 0[/mm] sind). Betrachte den
> > Ausdruck
> >
> > [mm]1 - \sum_{i=1}^n \frac{x_i}{\biggl( 1 + \sum_{j=1}^i x_i \biggr) \biggl( 1 + \sum_{j=1}^{i-1} x_i \biggr)}[/mm]
>
> >
> > Finde einen möglichst einfachen rationalen Ausdruck in
> > [mm]\sum_{i=1}^n x_i[/mm], der mit diesem Ausdruck übereinstimmt,
> > und beweise dies.
>
> Ist es richtig, dass in beiden Klammern im Nenner [mm]x_i[/mm] in
> der Summe steht und nicht [mm]x_j?[/mm]
oh, sorry, es sollte schon [mm] $x_j$ [/mm] sein!
> Und wird für i=1 die rechte
> Summe im Nenner als "leer" behandelt, hat also den Wert 0?
Genau.
> Wenn ja, dann müsste für n=2 der Term ausgeschrieben ja
> so lauten:
>
> [mm]1-\bruch{x_1}{1+x_1}-\bruch{x_2}{(1+2x_2)(1+x_2)}[/mm]
>
> Richtig so?
Nein, da ich mich vertan hab. Es sollte [mm]1-\bruch{x_1}{1+x_1}-\bruch{x_2}{(1+x_1+x_2)(1+x_1)}[/mm] da stehen.
LG Felix
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 08:55 Do 21.07.2011 | Autor: | wauwau |
[mm] \frac{1}{1+\sum_{i=1}^{n}x_i}
[/mm]
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:27 Do 21.07.2011 | Autor: | felixf |
> [mm]\frac{1}{1+\sum_{i=1}^{n}x_i}[/mm]
|
|
|
|
|
Moin Felix!
Ich habe mich auch mal an deiner Aufgabe versucht.
Vermutung: 1 - [mm] \sum_{i=1}^n \frac{x_i}{\biggl( 1 + \sum_{j=1}^i x_j \biggr) \biggl( 1 + \sum_{j=1}^{i-1} x_j \biggr)}=\frac{1}{1+\sum_{i=1}^nx_i}
[/mm]
Beweis durch vollständige Induktion:
IA (n=1): [mm] 1-\frac{x_1}{1+x_1}=\frac{1}{1+x_1}
[/mm]
IV: [mm] 1-\sum_{i=1}^n \frac{x_i}{\biggl( 1 + \sum_{j=1}^i x_j \biggr) \biggl( 1 + \sum_{j=1}^{i-1} x_j \biggr)}=\frac{1}{1+\sum_{j=1}^nx_j}
[/mm]
I-Beweis [mm] (n\Rightarrow [/mm] n+1):
[mm] 1-\sum_{i=1}^{n+1} \frac{x_i}{\biggl( 1 + \sum_{j=1}^i x_j \biggr) \biggl( 1 + \sum_{j=1}^{i-1} x_j \biggr)}=1-\sum_{i=1}^n \frac{x_i}{\biggl( 1 + \sum_{j=1}^i x_j \biggr) \biggl( 1 + \sum_{j=1}^{i-1} x_j \biggr)}-\frac{x_{n+1}}{\biggl( 1 + \sum_{j=1}^{n+1} x_j \biggr) \biggl( 1 + \sum_{j=1}^{n} x_j \biggr)}
[/mm]
[mm] \stackrel{IV}{=}\frac{1}{1+\sum_{j=1}^nx_j}-\frac{x_{n+1}}{\biggl( 1 + \sum_{j=1}^{n+1} x_j \biggr) \biggl( 1 + \sum_{j=1}^{n} x_j \biggr)}=\frac{\biggl( 1 + \sum_{j=1}^{n+1} x_j \biggr)-x_{n+1}}{\biggl( 1 + \sum_{j=1}^{n+1} x_j \biggr) \biggl( 1 + \sum_{j=1}^{n} x_j \biggr)}=\frac{1}{1+\sum_{j=1}^{n+1}x_j}
[/mm]
q.e.d.
LG
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:28 Do 21.07.2011 | Autor: | felixf |
Moin! :)
> Ich habe mich auch mal an deiner Aufgabe versucht.
>
> Vermutung: 1 - [mm]\sum_{i=1}^n \frac{x_i}{\biggl( 1 + \sum_{j=1}^i x_j \biggr) \biggl( 1 + \sum_{j=1}^{i-1} x_j \biggr)}=\frac{1}{1+\sum_{i=1}^nx_i}[/mm]
>
> Beweis durch vollständige Induktion:
>
> IA (n=1): [mm]1-\frac{x_1}{1+x_1}=\frac{1}{1+x_1}[/mm]
> IV: [mm]1-\sum_{i=1}^n \frac{x_i}{\biggl( 1 + \sum_{j=1}^i x_j \biggr) \biggl( 1 + \sum_{j=1}^{i-1} x_j \biggr)}=\frac{1}{1+\sum_{j=1}^nx_j}[/mm]
>
> I-Beweis [mm](n\Rightarrow[/mm] n+1):
>
> [mm]1-\sum_{i=1}^{n+1} \frac{x_i}{\biggl( 1 + \sum_{j=1}^i x_j \biggr) \biggl( 1 + \sum_{j=1}^{i-1} x_j \biggr)}=1-\sum_{i=1}^n \frac{x_i}{\biggl( 1 + \sum_{j=1}^i x_j \biggr) \biggl( 1 + \sum_{j=1}^{i-1} x_j \biggr)}-\frac{x_{n+1}}{\biggl( 1 + \sum_{j=1}^{n+1} x_j \biggr) \biggl( 1 + \sum_{j=1}^{n} x_j \biggr)}[/mm]
>
>
> [mm]\stackrel{IV}{=}\frac{1}{1+\sum_{j=1}^nx_j}-\frac{x_{n+1}}{\biggl( 1 + \sum_{j=1}^{n+1} x_j \biggr) \biggl( 1 + \sum_{j=1}^{n} x_j \biggr)}=\frac{\biggl( 1 + \sum_{j=1}^{n+1} x_j \biggr)-x_{n+1}}{\biggl( 1 + \sum_{j=1}^{n+1} x_j \biggr) \biggl( 1 + \sum_{j=1}^{n} x_j \biggr)}=\frac{1}{1+\sum_{j=1}^{n+1}x_j}[/mm]
>
> q.e.d.
Sieht richtig aus!
LG Felix
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 14:27 Do 21.07.2011 | Autor: | wieschoo |
[mm] 1 - \sum_{i=1}^n \frac{x_i}{\biggl( 1 + \sum_{j=1}^i x_j \biggr) \biggl( 1 + \sum_{j=1}^{i-1} x_j \biggr)} =\left( 1+\sum_{i=1}^n x_i\right) ^{-1}[/mm]
die vollständige Induktion spar ich mir jetzt. Vielleicht geht es auch eleganter.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:32 Do 21.07.2011 | Autor: | felixf |
Moin,
> [mm]1 - \sum_{i=1}^n \frac{x_i}{\biggl( 1 + \sum_{j=1}^i x_j \biggr) \biggl( 1 + \sum_{j=1}^{i-1} x_j \biggr)} =\left( 1+\sum_{i=1}^n x_i\right) ^{-1}[/mm]
> die vollständige Induktion spar ich mir jetzt. Vielleicht
> geht es auch eleganter.
An alternativen Beweisen (evtl. etwas kombinatorisches?) bin ich immer interessiert...
Die Induktion ist allerdings wirklich sehr einfach, wenn man nicht zu gross schreibt ist man in zwei Zeilen fertig.
LG Felix
|
|
|
|
|
Hallo,
ich habe als Ausdruck für den angegebene Ausdruck folgendes erhalten:
$1 - [mm] \sum_{i=1}^n \frac{x_i}{\biggl( 1 + \sum_{j=1}^i x_j \biggr) \biggl( 1 + \sum_{j=1}^{i-1} x_j \biggr)}=\frac{1}{1+\sum_{j=1}^{n}x_{j}}$
[/mm]
Beweis durch vollständige Induktion:
IA: n=1
$1 - [mm] \sum_{i=1}^1 \frac{x_i}{\biggl( 1 + \sum_{j=1}^i x_j \biggr) \biggl( 1 + \sum_{j=1}^{i-1} x_j \biggr)}=1-\frac{1}{1+x_{1}}=\frac{1+x_{1}-x_{1}}{1+x_{1}}=\frac{1}{1+x_{1}}$
[/mm]
IV:
$ 1 - [mm] \sum_{i=1}^n \frac{x_i}{\biggl( 1 + \sum_{j=1}^i x_j \biggr) \biggl( 1 + \sum_{j=1}^{i-1} x_j \biggr)}=\frac{1}{1+\sum\limits_{j=1}^{n}x_{j}} [/mm] $
IS:
$ 1 - [mm] \sum\limits_{i=1}^{n+1} \frac{x_i}{\biggl( 1 + \sum\limits_{j=1}^i x_j \biggr) \biggl( 1 + \sum\limits_{j=1}^{i-1} x_j \biggr)}= [/mm] 1 - [mm] \sum\limits_{i=1}^n \frac{x_i}{\biggl( 1 + \sum\limits_{j=1}^i x_j \biggr) \biggl( 1 + \sum\limits_{j=1}^{i-1} x_j \biggr)}-\frac{x_{n+1}}{\biggl( 1 + \sum\limits_{j=1}^{n+1} x_j \biggr) \biggl( 1 + \sum\limits_{j=1}^{n} x_j \biggr)}=\frac{1}{1+\sum\limits_{j=1}^{n}x_{j}}-\frac{x_{n+1}}{\biggl( 1 + \sum\limits_{j=1}^{n+1} x_j \biggr) \biggl( 1 + \sum\limits_{j=1}^{n} x_j \biggr)}=\frac{1+\sum\limits_{j=1}^{n+1}x_{j}-x_{n+1}}{\biggl( 1 + \sum\limits_{j=1}^{n+1} x_j \biggr) \biggl( 1 + \sum\limits_{j=1}^{n} x_j \biggr)}=\frac{1}{1+\sum\limits_{j=1}^{n+1}x_{j}}$
[/mm]
Das ist wirklich eine schöne Vereinfachung.
Viele Grüße
Blasco
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:44 Sa 30.07.2011 | Autor: | felixf |
Moin Blasco,
sieht gut aus :)
Moin alle,
ich hab den ganzen Thread mal allgemein lesbar gemacht.
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:56 Mi 10.08.2011 | Autor: | reverend |
Moin Felix,
> ich hab den ganzen Thread mal allgemein lesbar gemacht.
>
> LG Felix
Das scheint mir ein Indiz dafür zu sein, dass die Übungsaufgabe nicht mehr bearbeitet wird/werden soll. Ich begrüne daher auch mal die Dummy-Frage.
Grüße
reverend
|
|
|
|