www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Spaltenräume
Spaltenräume < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spaltenräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:54 Mi 28.05.2008
Autor: Wimme

Aufgabe
A [mm] \in K^{m \times n} [/mm] und b [mm] \in K^m [/mm]
Zeigen Sie:
b [mm] \in [/mm] SR(A) [mm] \Rightarrow [/mm] SR(A) = SR(A,b).

Hallo!

Ich weiß nicht ganz wie ich an obige Aufgabe herangehen soll. Es scheint mir sehr logisch, denn wenn b schon im Spaltenraum (SR) von A ist, und es ist ja erst recht in SR(A,b), dann sollten die beiden Mengen doch gleich sein, oder?

Als Hinweis steht dazu, man solle folgendes verwenden:
V ist K-VR und M [mm] \subset [/mm] V

a) M [mm] \subseteq [/mm] <M>
b) <M> [mm] \leq [/mm] V
c) M [mm] \subseteq [/mm] W [mm] \leq [/mm] V dann auch <M> [mm] \subseteq [/mm] W
d) M [mm] \leq [/mm] V [mm] \Leftrightarrow [/mm] M = <M>
e) <<M>> = <M>

<> = Erzeugnis.

Ich erkenne nicht recht den Zugang. Soll ich am besten versuchen beide Inklusionen zu zeigen?

        
Bezug
Spaltenräume: Antwort
Status: (Antwort) fertig Status 
Datum: 08:47 Do 29.05.2008
Autor: angela.h.b.


> A [mm]\in K^{m \times n}[/mm] und b [mm]\in K^m[/mm]
>  Zeigen Sie:
>  b [mm]\in[/mm] SR(A) [mm]\Rightarrow[/mm] SR(A) = SR(A,b).
>  Hallo!
>  
> Ich weiß nicht ganz wie ich an obige Aufgabe herangehen
> soll. Es scheint mir sehr logisch, denn wenn b schon im
> Spaltenraum (SR) von A ist, und es ist ja erst recht in
> SR(A,b), dann sollten die beiden Mengen doch gleich sein,
> oder?


> Ich erkenne nicht recht den Zugang. Soll ich am besten
> versuchen beide Inklusionen zu zeigen?


Hallo,

genau. Für die Gleichheit der Mengen mußt Du ja zweierlei zeigen:

1. SR(A) [mm] \subseteq [/mm] SR(A,b)
2. SR(A,b) [mm] \subseteq [/mm] SR(A)

In der Tat ist die erste Aussage wirklich kein Weltwunder.

Die zweite Aussage ist weniger selbstverständlich. Hier kommt die Voraussetzung zum Tragen.

Ich würde nun so beginnen: seien [mm] a_1, [/mm] ..., [mm] a_n \in K^m [/mm] die Spalten von A.

Dann ist der Spaltenraum SR(A)=....

Gruß v. Angela


>  
> Als Hinweis steht dazu, man solle folgendes verwenden:
>  V ist K-VR und M [mm]\subset[/mm] V
>  
> a) M [mm]\subseteq[/mm] <M>
>  b) <M> [mm]\leq[/mm] V

>  c) M [mm]\subseteq[/mm] W [mm]\leq[/mm] V dann auch <M> [mm]\subseteq[/mm] W

>  d) M [mm]\leq[/mm] V [mm]\Leftrightarrow[/mm] M = <M>
>  e) <<M>> = <M>

>  
> <> = Erzeugnis.
>  
> Ich erkenne nicht recht den Zugang. Soll ich am besten
> versuchen beide Inklusionen zu zeigen?


Bezug
                
Bezug
Spaltenräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:17 Do 29.05.2008
Autor: Wimme

ok, danke für deine Hilfe!
Hier mal ein Versuch:

Seien [mm] a_1,...,a_n \in K^m [/mm] die Spalten von A.

SR(A,b) [mm] \supseteq [/mm] SR(A):

Sei x [mm] \in [/mm] SR(A). D.h. x ist darstellbar als [mm] \sum_{i=1}^{n}{\lambda_i \cdot a_i} [/mm]
Da [mm] a_1 [/mm] ... [mm] a_n \in [/mm] SR(A,b) ist x mit der gleichen LK auch [mm] \in [/mm] SR(A,b).

SR(A,b) [mm] \supseteq [/mm] SR(A):

Sei z [mm] \in [/mm] SR(A,b).Mit [mm] z=\sum_{i=1}^{k}{\lambda_i \cdot q_i}, [/mm] wobei [mm] q_i [/mm] Spalte von A oder b.

1.Fall: keines der [mm] q_i [/mm] ist b:
z liegt auch in SR(A), da alle [mm] q_i [/mm] Spalten von A sind.

2.Fall: ein [mm] q_i=b. [/mm] O.B.d.A [mm] q_1 [/mm]
D.h. [mm] z=\lambda_1 \cdot q_1 [/mm] + [mm] \sum_{i=2}^{n}{\lambda_i \cdot a_i} [/mm]
[mm] \lambda_1 \cdot q_1 [/mm] ist [mm] \in [/mm] SR(A) weil b [mm] \in [/mm] SR(A), d.h. b ist darstellbar durch [mm] b=\sum_{i=1}^{l}{\lambda_i \cdot a_i} [/mm]
Und damit ist auch [mm] \lambda_1 \cdot [/mm] b eine LK der [mm] a_i [/mm] und damit in SR(A):
[mm] \sum_{i=2}^{n}{\lambda_i \cdot a_i} [/mm] ist [mm] \in [/mm] SR(A) und damit  ganz z.

Was hälst du davon?

Bezug
                        
Bezug
Spaltenräume: Antwort
Status: (Antwort) fertig Status 
Datum: 08:19 Fr 30.05.2008
Autor: angela.h.b.


>  Hier mal ein Versuch:

> Was hälst du davon?

Hallo,

ich finde das, was Du schreibst, recht brauchbar, auf jeden Fall hast Du alles verstanden.

An einigen Stellen könnte man sich durch geschicktere Wahl v. Bezeichnungen noch ein paar Steine aus dem Weg räumen.

>  
> Seien [mm]a_1,...,a_n \in K^m[/mm] die Spalten von A.
>  
> SR(A,b) [mm]\supseteq[/mm] SR(A):
>  
> Sei x [mm]\in[/mm] SR(A). D.h. x ist darstellbar als
> [mm]\sum_{i=1}^{n}{\lambda_i \cdot a_i}[/mm]
>  Da [mm]a_1[/mm] ... [mm]a_n \in[/mm]
> SR(A,b) ist x mit der gleichen LK auch [mm]\in[/mm] SR(A,b).

Schreib lieber [mm] \sum_{i=1}^{n}{\lambda_i \cdot a_i}=(\sum_{i=1}^{n}{\lambda_i \cdot a_i}) [/mm] + 0*b,

dann sieht man zwingend, daß das in S(A,b) liegt.

>  
> SR(A,b) [mm]\supseteq[/mm] SR(A):
>  
> Sei z [mm]\in[/mm] SR(A,b).Mit [mm]z=\sum_{i=1}^{k}{\lambda_i \cdot q_i},[/mm]
> wobei [mm]q_i[/mm] Spalte von A oder b.

Du kannst auf die Fallunterscheidung verzichten, und alles etwas flüssiger gestalten, wenn Du sagst

nach Voraussetzung gibt es [mm] \mu_i [/mm] mit [mm] b=\summe\mu_ia_i. [/mm]

Sei [mm] x=(\summe\lambda_ia_i)+\lambda [/mm] b= ..., und nun sortierst Du so, daß man nicht anders kann, als zu sehen, daß x eine Linearkombi der [mm] a_i [/mm] ist.

Gruß v. Angela


>  
> 1.Fall: keines der [mm]q_i[/mm] ist b:
>  z liegt auch in SR(A), da alle [mm]q_i[/mm] Spalten von A sind.
>  
> 2.Fall: ein [mm]q_i=b.[/mm] O.B.d.A [mm]q_1[/mm]
>  D.h. [mm]z=\lambda_1 \cdot q_1[/mm] + [mm]\sum_{i=2}^{n}{\lambda_i \cdot a_i}[/mm]
>  
> [mm]\lambda_1 \cdot q_1[/mm] ist [mm]\in[/mm] SR(A) weil b [mm]\in[/mm] SR(A), d.h. b
> ist darstellbar durch [mm]b=\sum_{i=1}^{l}{\lambda_i \cdot a_i}[/mm]
>  
> Und damit ist auch [mm]\lambda_1 \cdot[/mm] b eine LK der [mm]a_i[/mm] und
> damit in SR(A):
>  [mm]\sum_{i=2}^{n}{\lambda_i \cdot a_i}[/mm] ist [mm]\in[/mm] SR(A) und
> damit  ganz z.
>  
> Was hälst du davon?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de