www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Spaltenraum/Basis
Spaltenraum/Basis < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spaltenraum/Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:01 Sa 18.02.2012
Autor: theresetom

Aufgabe
Betrachte den von den Vektoren
[mm] v_1=\vektor{1 \\ 2\\4\\6\\1},v_2=\vektor{2 \\ 4\\8\\15\\6},v_3=\vektor{1 \\ 2\\4\\9\\8},v_4=\vektor{4\\ 8\\16\\30\\15},v_5=\vektor{3 \\ 6\\12\\24\\12} [/mm]
aufgespannten Teilraum [mm] W: \subseteq \IR^5 [/mm]
1) Bestimme die Basis von W

Fassen wir die Vektoren zu einer Matrix zusammen.
[mm] \pmat{ 1 & 2&1&4&3 \\ 2&4&2&8&6\\4&8&4&16&12\\6&15&9&30&24\\1&6&8&15&12} [/mm]
dann ist W der Spaltenraum von A
Ja man könnte nun Spaltenumformungen tätigen, und die ersten k (rank(A)=k) Spalten der Spaltenstufenform A'(umgeformte Matrix) bilden eine Basis des Spaltenraums W von A.

Meine Frage:
Könnte ich auch Zeilenumformungen durchführen und dann das Korollar verwenden:
Die Spalten von A, wo die Spünge stattfinden bilden eine Basis des Spaltenraums von A.

Jedoch kommt da jeweils was anderes raus!

Spaltenmformungen:
[mm] \pmat{ 1 & 0&0&0&0 \\ 2&0&0&0&0\\4&0&0&0&0\\6&3&0&0&0\\1&4&3&0&0} [/mm]
Die Vektoren [mm] b_1, b_2, b_3 [/mm] bilden Basis von W

Zeilumformungen:
[mm] \pmat{ 1 & 2&1&4&3 \\ 0&3&3&6&6\\0&0&-3&-3&-1\\0&0&0&0&0\\0&0&0&0&0} [/mm]
1,2,3 Spalte finden Sprünge statt. Also
[mm] v_1, v_2,v_3 [/mm] Basis von W.


Wo liegt mein denkfehler? Rechenfehler sind mal nicht weiter wichtig!

        
Bezug
Spaltenraum/Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 05:05 Sa 18.02.2012
Autor: angela.h.b.


> Betrachte den von den Vektoren
>  [mm]v_1=\vektor{1 \\ 2\\ 4\\ 6\\ 1},v_2=\vektor{2 \\ 4\\ 8\\ 15\\ 6},v_3=\vektor{1 \\ 2\\ 4\\ 9\\ 8},v_4=\vektor{4\\ 8\\ 16\\ 30\\ 15},v_5=\vektor{3 \\ 6\\ 12\\ 24\\ 12}[/mm]
>  
> aufgespannten Teilraum [mm]W: \subseteq \IR^5[/mm]
>  
> 1) Bestimme die Basis von W
>  Fassen wir die Vektoren zu einer Matrix zusammen.
>  [mm]\pmat{ 1 & 2&1&4&3 \\ 2&4&2&8&6\\ 4&8&4&16&12\\ 6&15&9&30&24\\ 1&6&8&15&12}[/mm]
>  
> dann ist W der Spaltenraum von A
>  Ja man könnte nun Spaltenumformungen tätigen, und die
> ersten k (rank(A)=k) Spalten der Spaltenstufenform
> A'(umgeformte Matrix) bilden eine Basis des Spaltenraums W
> von A.
>  
> Meine Frage:
>  Könnte ich auch Zeilenumformungen durchführen und dann
> das Korollar verwenden:
>  Die Spalten von A, wo die Spünge stattfinden bilden eine
> Basis des Spaltenraums von A.
>  
> Jedoch kommt da jeweils was anderes raus!
>  
> Spaltenmformungen:
>  [mm]\pmat{ 1 & 0&0&0&0 \\ 2&0&0&0&0\\ 4&0&0&0&0\\ 6&3&0&0&0\\ 1&4&3&0&0}[/mm]
>  
> Die Vektoren [mm]b_1, b_2, b_3[/mm] bilden Basis von W
>  
> Zeilumformungen:
>  [mm]\pmat{ 1 & 2&1&4&3 \\ 0&3&3&6&6\\ 0&0&-3&-3&-1\\ 0&0&0&0&0\\ 0&0&0&0&0}[/mm]
>  
> 1,2,3 Spalte finden Sprünge statt. Also
>  [mm]v_1, v_2,v_3[/mm] Basis von W.
>  
>
> Wo liegt mein denkfehler? Rechenfehler sind mal nicht
> weiter wichtig!

Hallo,

beide Vorgehesweisen sind richtig und liefern ein richtiges Ergebnis.
Deinen Denkfehler sieht man schon in der Aufgabenstellung:

> 1) Bestimme die Basis von W

Es gibt nicht die Basis von W. Vektorräume haben i.d.R. viele Basen, und eine davon bestimmt man bei seinen Bemühungen.

LG Angela


Bezug
                
Bezug
Spaltenraum/Basis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:11 Sa 18.02.2012
Autor: theresetom

Ah, ist klar;)
DANKE

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de