www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Span von Vektoren
Span von Vektoren < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Span von Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:15 So 12.02.2012
Autor: omarco

Aufgabe
1. Es seien [mm] v_{1},v_{2} \in \IR^{n} [/mm] , dann gilt immer [mm] span(v_{1}) \cup span(v_{2}) [/mm] = [mm] span(v_{1}, v_{2}). [/mm]

2.  Es seien [mm] v_{1},v_{2} \in \IR^{n} [/mm] , dann gilt immer [mm] span(v_{1}) \cup span(v_{2}) \not= span(v_{1}, v_{2}). [/mm]



Also ich weis, dass die Antwort bei beiden nein heißt. Meine Frage: Gibt es einen Fall wo die 1. oder 2. gehen

Bei der 1 Könnte ich den Nullvektor nehmen. Der würde in beiden drin sein span [mm] span(v_{1}),span(v_{2})drin [/mm] sein und in [mm] span(v_{1}, v_{2}) [/mm] oder ? Gibt es noch einen anderen Vektor der dieses Kriterium auch erfüllt.

Gibt es bei der 2. ein Vektorpaar, dass das Kriterium erfüllt? Mir fällt kein Beispiel ein ?

Also im eigentliche Sinne beschäftige ich mich mit der Fragestellung:
1. Es seien [mm] v_{1},v_{2} \in \IR^{n} [/mm] , dann gilt für einen Fall [mm] span(v_{1}) \cup span(v_{2}) [/mm] = [mm] span(v_{1}, v_{2}). [/mm]

2.  Es seien [mm] v_{1},v_{2} \in \IR^{n} [/mm] , dann gilt für einen Fall [mm] span(v_{1}) \cup span(v_{2}) \not= span(v_{1}, v_{2}). [/mm]



        
Bezug
Span von Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 17:13 So 12.02.2012
Autor: wieschoo


> 1. Es seien [mm]v_{1},v_{2} \in \IR^{n}[/mm] , dann gilt immer
> [mm]span(v_{1}) \cup span(v_{2})[/mm] = [mm]span(v_{1}, v_{2}).[/mm]
>  
> 2.  Es seien [mm]v_{1},v_{2} \in \IR^{n}[/mm] , dann gilt immer
> [mm]span(v_{1}) \cup span(v_{2}) \not= span(v_{1}, v_{2}).[/mm]
>  
>
> Also ich weis, dass die Antwort bei beiden nein heißt.
> Meine Frage: Gibt es einen Fall wo die 1. oder 2. gehen

Gut

>  
> Bei der 1 Könnte ich den Nullvektor nehmen. Der würde in
> beiden drin sein span [mm]span(v_{1}),span(v_{2})drin[/mm] sein und
> in [mm]span(v_{1}, v_{2})[/mm] oder ? Gibt es noch einen anderen
> Vektor der dieses Kriterium auch erfüllt.

Damit hast du doch noch keine Gleichheit. Du hast lediglich einen Vektor gefunden, der in beiden "span" drin liegt.
Oder meinst du [mm] $v_1=v_2=0$? [/mm]
Dann passt das ja. im [mm] $\IR^2$ [/mm] nimmst du zwei parallele Geraden.

>
> Gibt es bei der 2. ein Vektorpaar, dass das Kriterium
> erfüllt? Mir fällt kein Beispiel ein ?

Für [mm] $\IR^2$ [/mm] kannst du die Koordinatenachsen nehmen. Der Punkt (1,1) liegt werder in span(1,0) noch in span(0,1) aber in span((0,1),(1,0)).

>
> Also im eigentliche Sinne beschäftige ich mich mit der
> Fragestellung:
>  1. Es seien [mm]v_{1},v_{2} \in \IR^{n}[/mm] , dann gilt für einen
> Fall [mm]span(v_{1}) \cup span(v_{2})[/mm] = [mm]span(v_{1}, v_{2}).[/mm]

bildlich in [mm] $\IR^2$: [/mm] parallele Geraden

>  
> 2.  Es seien [mm]v_{1},v_{2} \in \IR^{n}[/mm] , dann gilt für einen
> Fall [mm]span(v_{1}) \cup span(v_{2}) \not= span(v_{1}, v_{2}).[/mm]

bildlich in [mm] $\IR^2$: [/mm] Koordinatenachsen

>

gruß
wieschoo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de