www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Spannungsverteilung in Scheibe
Spannungsverteilung in Scheibe < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spannungsverteilung in Scheibe: Problembeschreibung
Status: (Frage) überfällig Status 
Datum: 15:27 Di 27.10.2009
Autor: hagger

Hallo.
Ich habe eine Frage, die im Zusammenhang mit der Berechnung der Spannungsverteilung in einer isotropen Scheibe steht (Ich will innerhalb meiner Diplomarbeit unter anderem so eine analytische Berechnung durchführen).


Nach Lekhnitskii bzw. De Jong kann die Spannung in einer isotropen Scheibe mit Loch (Radius=R) - beispielsweise in x-Richtung bestimmt werden durch


[mm] \begin{equation} \sigma_x = 2 Re(\mu_1^2 \varphi'(z_1) + \mu_2^2 \psi'(z_2)) \quad . \end{equation} [/mm]

[mm] \medskip [/mm]
[mm] ($\varphi(z_1)$ [/mm] und [mm] $\psi(z_2)$ [/mm] sind von [mm] $\zeta$ [/mm] abhängige Funktionen)

Die relevanten  Variablen lassen sich wie folgt berechnen:

[mm] \begin{equation} z_k = x + \mu_k \cdot y \qquad k=1,2 \end{equation} [/mm]

[mm] \medskip [/mm]
[mm] $\mu_1$ [/mm] und [mm] $\mu_2$ [/mm] werden definiert durch

[mm] \begin{equation} \mu_1 = \sqrt{\frac{r-a}{2}} + \mathrm i \cdot \sqrt{\frac{r+a}{2}} \end{equation} [/mm]

[mm] \begin{equation} \mu_2 = - \sqrt{\frac{r-a}{2}} + \mathrm i \cdot \sqrt{\frac{r+a}{2}} \end{equation} [/mm]

[mm] \medskip [/mm]
$r$ und $a$ sind reele Zahlen (Berechnen sich aus Einträgen der Nachgiebigkeitsmatrix des Werkstoffs).

[mm] \medskip [/mm]
Es wird nun eine Koordinatentransformation in die komplexe Ebene (Konforme Abbildung) in folgender Form eingeführt (siehe auch Abbildung):

[mm] \begin{equation} \zeta_k = \frac{z_k \pm \sqrt{z_k^2-R^2(1+\mu_k^2)}}{R(1-\mathrm i \cdot \mu_k)} \qquad k=1,2 \label{prob} \end{equation} [/mm]

[mm] \medskip [/mm]
Obige Gleichung stellt das Problem dar: Was entscheidet, ob der Zähler des Bruchs von [mm] $\zeta_k$ ($\displaystyle \pm \sqrt{z_k^2-R^2(1+\mu_k^2)}$) [/mm] mit einer positiven oder negativen Wurzel versehen wird?

[mm] \medskip [/mm]
Im Verlauf des Berechnungsgangs kann nur eine Lösung von [mm] $\zeta_k$ [/mm] weiterverwendet werden (Fallabhängig - warscheinlich je nach x- und y-Koordinate des betrachteten Punktes auf der Scheibe).

Die Funktion unter der Wurzel [mm] $\displaystyle z_k^2-R^2(1+\mu_k^2)$ [/mm] besitzt eine Unstetigkeit - eventuell hat es damit etwas zu tun.

Leider bin ich auch nach mehrtägigem Probieren und Transformieren zu keiner Lösung gelangt...

In der Literatur wurde immer nur die Formel für [mm] $\zeta_k$ [/mm] in genannter Form angegeben, ohne näher darauf einzugehen.

Ich würde mich sehr freuen, wenn mir jemand weiterhelfen könnte!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Anhang Nr. 2 (Typ: png) [nicht öffentlich]
        
Bezug
Spannungsverteilung in Scheibe: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Mi 11.11.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de