www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Spat: Mittelpunkts-Berechung
Spat: Mittelpunkts-Berechung < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spat: Mittelpunkts-Berechung: Rechenweg
Status: (Frage) beantwortet Status 
Datum: 15:13 Mo 19.06.2006
Autor: Loewenzahn

Aufgabe
Berechnen Sie den Spatmittelpunkt M !
(1. Die drei aufspannenden Vektoren bzw. die vier dafür notwendigen Koordinatenpunkte sind gegeben.
2. Vorrausgegangen ist eine Berechung aller Kantenmitten.)

Wie sieht denn hier der Ansatz aus? drücke ich da jetzt die Raumdiagonalen (die sich ja kreuzen) durch diese drei vektoren aus und setze diese ausdrücke gleich, oder wie?
Habe leider keine Skizze, weil mein scanner z.Zt. kaputt ist.

wenn mir jmd. den ansatz plausibel aufzeigen könnte, wäre das sehr lieb.
Beste greetinx!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Spat: Mittelpunkts-Berechung: rechenansatz
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:21 Mo 19.06.2006
Autor: Loewenzahn

ups, ich würde nicht die raumdiagonalen schneiden, sondern zwei verschd. wegstrecken gleichsetzen, die zu Mittelpunkt M führen, also kommt in den aufstellungen für die zwei wege in jedem jew. so ein teilstück "...+k*(Vektor d. Raumdiag.)", sehe ich das richtig? Natürlich muss ich dann zwei verschiedene von den vier mgl. raumdiag. nehmen.
was haltet ihr von dem ansatz?

Bezug
        
Bezug
Spat: Mittelpunkts-Berechung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:35 Mo 19.06.2006
Autor: giskard

Hallo löwenzahn!

warum so kompliziert denken?
ein spat ist doch im grunde nix anderes als ein dreidimensionales parallelogramm. (etwas vereinfacht ausgedrückt).
das bedeutet auch, dass sich alle raumdiagonalen in einem punkt schneiden. und zwar genau in der mitte. also auch die mitte der raumdiagonalen.

also einfach die aufspannenden vektoren  [mm] \vec{a}, \vec{b} [/mm] und  [mm] \vec{c} [/mm] addieren, um eine diagonale zu bilden. durch zwei teilen, um die hälfte der diagonalen zu bestimmen. und zum eckpunkt dazuaddieren. fertig.

müsste eigentlich bei allen diagonalen das gleiche rauskommen. (wenn man immer den richtigen eckpunkt wählt)

hoffentlich hilft dir das.
giskard

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de