Spektralsatz < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Hallo, ich habe zum Spektalsatz eine Verständnisfrage. Entschuldigung dass ich nachfrage, obwohl es schon so oft im Internet erklärt wird, aber ich verstehe es nicht. Also wie ich ihn kenne: Sei V ein endlichdimensionaler Vektorraum mit einem Skalarprodunkt. [mm] \alpha \in Hom_K [/mm] (V,V) ist genau dann normal, wenn eine geordnete Orthonormalbasis B von V existiert, so dass gilt:
i) Sei K= [mm] \IC. [/mm] Dann ist [mm] _B(\alpha)_B [/mm] eine Diagonalmatrix.
ii)Sei K= [mm] \IR. [/mm]
- ist [mm] \alpha [/mm] trigonalisierbar, so ist [mm] _B(\alpha)_B [/mm] eine Diagonalmatrix.
-Ist [mm] \alpha [/mm] nicht trigonalisierbar, so ist [mm] _B(\alpha)_B =\begin{pmatrix}
\lambda_1 & & & & \\
0 & \lambda_2 & & & & \\
\\
\\
0&&&&& \lambda_r\\
&&&&&&A_1\\
\\
\\
&&&&&&&&&A_s
\end{pmatrix} [/mm] wobei [mm] \lambda_j [/mm] Eigenwert von [mm] \alpha [/mm] und die [mm] A_j \in Mat_(\IR)(2,2) [/mm] mit [mm] A_j =\begin{pmatrix}
a_j & b_j \\
-b_j & a_j
\end{pmatrix} b_j \not=0 [/mm]
Was ich nicht verstehe ist, wieso wenn [mm] \alpha [/mm] trigonalisierbar ist, dass [mm] _B(\alpha)_B [/mm] eine Diagonalmatrix ist, also wieso ist es dann auf einmal diagonalisierbar? Ich weiss zwar, dass wenn [mm] \alpha [/mm] trigonalisierbar ist, dass das chpol in Linearfaktoren zerfällt und damit alle Eigenwerte reell sind, aber woher weiss ich denn, dass dann für jeden Eigenwert die algebraische=geometrische Vielfachheit übereinstimmt ? Ich hätte jetzt erst nur gedacht, dass die Darstellungsmatrix bezüglich B eine obere/untere Dreiecksmatrix ist. Ich hoffe, mir kann das jemand erklären, wäre sehr dankbar.
Lg
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:20 Mi 18.04.2012 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|