Spektrum mittels Faltungssatz < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 20:35 Di 29.01.2008 | Autor: | bastidhc |
Aufgabe | Ermitteln Sie das Spektrum folgender Funktion mittels Faltungssatz
[mm] x(t)=sin(2\*\pi\*f_0\*t)\*e^{-\bruch{t}{\alpha} } [/mm] |
Kann mir bitte jemand helfen?
Ich transformiere den sin Teil und der [mm] e^x [/mm] extra und will ihn dann multiplizieren....da scheiterts dann...
Direkt im Zeitbereich komme ich auch nicht auf was rechenbares.
Danke und mfG
Sebastian
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:50 Di 29.01.2008 | Autor: | Bastiane |
Hallo bastidhc!
> Ermitteln Sie das Spektrum folgender Funktion mittels
> Faltungssatz
>
> [mm]x(t)=sin(2\*\pi\*f_0\*t)\*e^{-\bruch{t}{\alpha} }[/mm]
> Kann
> mir bitte jemand helfen?
>
> Ich transformiere den sin Teil und der [mm]e^x[/mm] extra und will
> ihn dann multiplizieren....da scheiterts dann...
> Direkt im Zeitbereich komme ich auch nicht auf was
> rechenbares.
Nachdem was du machen willst, vermute ich, dass es [mm] x(t)=\sin(2\pi f_0 t)\*e^{-\frac{t}{\alpha}} [/mm] heißen soll, also der Stern für die Faltung steht, das Argument vom Sinus aber einfach Multiplikationen sein sollen.
Wo genau scheitert es denn dann? Kannst du die beiden Teile einzeln transformieren? An der Multiplikation sollte es doch nicht scheitern!?
Viele Grüße
Bastiane
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:19 Di 29.01.2008 | Autor: | bastidhc |
war meine erste formel hier: jedes [mm] \* [/mm] ist ein multiplikationszeichen.... also:
[mm] x(t)=sin(2\pi f_{0}t)e^{-\bruch{t}{\alpha}}
[/mm]
Mein Ansatz war, der aber auch falsch sein kann, ich transformiere den sinusteil und den [mm] e^x [/mm] term unabhängig....bzw. einfach in Tabelle schauen und multipliziere die beiden Transformierten dann im Frequenzbereich.
Bekomme dann was raus, wo ich wegen der Diracimpulse des Sinus nicht wirklich weiterrechnen kann.
Hoffe es ist einigermaßen verständlich ausgedrückt^^
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:29 Di 29.01.2008 | Autor: | bastidhc |
übrigens ist das [mm] \alpha [/mm] ein [mm] \tau....war [/mm] mir nur nicht klar dass das hier auch geht:
bekomme also raus:
[mm] x_1(f)=\bruch{i}{2}( \delta(f+f_0)- \delta(f-f_0))
[/mm]
[mm] x_2(f)=\bruch{2\pi}{1+(2\pi f_0)^2}
[/mm]
Wenn ich [mm] x_1 [/mm] und [mm] x_2 [/mm] multiplizieren will (weiß wie gesagt nicht obs der richtige Weg ist) komme ich nicht weiter
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:38 Di 29.01.2008 | Autor: | Bastiane |
Hallo bastidhc!
> war meine erste formel hier: jedes [mm]\*[/mm] ist ein
> multiplikationszeichen.... also:
Ach so. Aber es gilt doch [mm] \widehat{f\* g}=\hat{f}\cdot\hat{g}, [/mm] also wenn du die Fouriertransformierte einer Faltung berechnest, kannst du sie einzeln transformieren und dann falten. Aber nicht, wenn du die Fouriertransformierte eines Produktes berechnen willst, oder? Das käme mir jedenfalls komisch vor...
Was ist denn dieser "Faltungssatz"?
Viele Grüße
Bastiane
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:06 Mi 30.01.2008 | Autor: | bastidhc |
Alo erstmal danke, ds du dich mit meinem Problem beschäftigst
Mit deiner Symbolik komme ich nicht zurecht, aber ich denke du meinst das Richtige: Multplikation im Zeitbereich=Faltung im Frequenzbereich und umgekehrt....und wo ich mir das nochmal durch den Kopf hab gehen lassen, merke ich auch das mein Ansatz wohl totaler Mist ist.
Das heißt also ich ich müsste meine beiden Transformierten Funktionen im Frequenzbereich falten?!
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:20 Mi 30.01.2008 | Autor: | bastidhc |
Hab mir deine Antwort nochmal genauer angeschaut.
Also der Faltungssatz besagt:
[mm] y(t)=x(t)\*h(t) \circ-\bullet [/mm] X(f)H(f)=Y(f)
|
|
|
|
|
hallo
um die faltung zu verstehen, könnte man sie das ganze graphisch vorstellen,
sagen wir z.b. eine rechteckfunktion und eine abklingende e-funktion, und man will das spektrum erhalten, dann heißt faltung, man spiegelt eine der funktion an der y-achse und zieht sie dann über die andere drüber, das heißt faltung graphisch.
und jetzt zum berechnen.
z.b. eine einschaltfunktion * e-funktion, dann würd ich die einschaltfunktion spiegeln und rüberziehen.
da würd dann stehen:
[mm] \integral_{0}^{t}{\varepsilon(t-\gamma) * e^{-2.5\gamma} dx}
[/mm]
des ist ein sonderfall, weil die einschaltfunktion immer existiert, wenn wir des jetzt mit einem impuls machen, dann müssen wir fallunterscheidungen machen, sagen wir zum beispiel ein puls der bei 0 beginnt bis T0.
dann wird gefaltet, dann lautet das integral einmal von 0 bis T0
und das zweite integral geht dann von t-t0 nach t die beiden dann zusammen ergeben die faltung, ich hoffe es hat dir bisschen geholfen, ich hab des paar mal durchgelesen und ging es.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:19 Mi 09.02.2011 | Autor: | Bockert |
Aufgabe | x(t)=sin(2πFt)e-t/τ |
Von dieser gegebenen Funktion soll mittels Faltungssatz das Spektrum ermittelt werden.
Normalerweise würde ich ja einfach eine Fouriertrafo durchführen und hätte das Spektrum, aber was soll mir der Hinweis mit dem Faltungssatz sagen?
Danke schonmal
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:16 Mi 09.02.2011 | Autor: | qsxqsx |
Hallo,
Also es gilt einerseits, dass eine Faltung im Zeitbereich y(t) = h(t)*g(t) transformiert wird in eine Multiplikation im Frequentbereich H(w)G(w).
h(t)*g(t) ---> H(w)G(w)
Andrerseits ist eine Multiplikation im Zeitbereich y(t) = h(t)g(t) eine Faltung im Frequenzbereich H(w)G(w) welche noch mit einem [mm] Faktor2*\pi [/mm] skaliert (!) werden muss (wegen der Dualität der Fouriertransformation).
h(t)g(t) ---> [mm] \bruch{1}{2*\pi} [/mm] H(w)*G(w)
Du hast nun eine Multiplikation im Zeitbereich gegeben. Transformiere also beide Signale einzeln in den Frequenzbereich, falte sie dort und rechne mal [mm] \bruch{1}{2*\pi}.
[/mm]
Gruss
|
|
|
|