www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Spezielle lineare Gruppe
Spezielle lineare Gruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spezielle lineare Gruppe: Idee
Status: (Frage) beantwortet Status 
Datum: 17:42 Mo 29.04.2019
Autor: sven1

Hallo,
ich habe im Lehrbuch zur Algebra folgendes gefunden was ich nicht verstehe.
Sei $H := GL_+(n; [mm] \IR) [/mm] := [mm] \{ A \in GL(n; \IR) : \det A > 0 \}$ [/mm] dann ist nach dem Determinanten-Multiplikations-Satz (der ist mir bekannt):
$ GL(n; [mm] \IR) [/mm]  = H [mm] \cup [/mm] AH = H [mm] \cup [/mm] HA$ für $A [mm] \in [/mm] GL(n; [mm] \IR)$ [/mm] mit [mm] $\det [/mm] A < 0$.

Aber wieso ist
$AH = HA = [mm] \{ B \in GL(n; \IR): \det B < 0 \}$, [/mm] falls [mm] $\det [/mm] A < 0$?

Die erste Inklusion folgt durch den Determinanten-Multiplikations-Satz. Aber die Rückrichtung [mm] $\supseteq$? [/mm]

Ich versuche mir gerade selbst Gruppentheorie beizubringen. Bisher hat es gut geklappt, aber dieses Problem kriege ich nicht gelöst.

Bin für jeden Hinweis dankbar. :)

Beste Grüße

        
Bezug
Spezielle lineare Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 22:05 Mo 29.04.2019
Autor: Gonozal_IX

Hiho,

Sei $X = [mm] \text{diag}(-1,1,\ldots,1), [/mm] B [mm] \in \{ B \in GL(n; \IR): \det B < 0 \} [/mm] $, dann ist $BX [mm] \in [/mm] H$ und X ist selbstinvers.

Reicht dir das als Hinweis?

Gruß,
Gono

Bezug
                
Bezug
Spezielle lineare Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:51 Mo 29.04.2019
Autor: sven1

Danke.

Zu zeigen wäre für die Rückrichtung ja dass
$B [mm] \in [/mm] HA$ bzw. $B [mm] \in [/mm] AH$
ist.

Es ist nach deinem Hinweis u.a.
$AX [mm] \in [/mm] H [mm] \Rightarrow [/mm] A [mm] \in [/mm] HX [mm] \Rightarrow [/mm] HA [mm] \subseteq [/mm] HHX = HX $.
Folgt sogar $HX [mm] \subseteq [/mm] HA$ und damit $HX = HA$ (1)?

Dann ist analog
$BX [mm] \in [/mm] H [mm] \Rightarrow [/mm] B [mm] \in [/mm] HX$ und nach (1) $B [mm] \in [/mm] HA$.

Bezug
                        
Bezug
Spezielle lineare Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 08:36 Di 30.04.2019
Autor: Gonozal_IX

Hiho,

> Dann ist analog
> [mm]BX \in H \Rightarrow B \in HX[/mm] und nach (1) [mm]B \in HA[/mm].

ich bin davon ausgegangen, dass A (wie bei H) die Menge aller Matrizzen mit negativer Determinante beschreibt.
Also dass zZ ist $B = [mm] A_1A_2$ [/mm] mit [mm] $det(A_1) [/mm] > 0, [mm] det(A_2) [/mm] < 0$
Dann folgt das einfach aus obigem.

Wie fred gezeigt hat, ist es für fixes A deutlich einfacher :-)

Gruß,
Gono

Bezug
        
Bezug
Spezielle lineare Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 07:13 Di 30.04.2019
Autor: fred97

Sei [mm] $\det [/mm] A <0.$

Ist $B [mm] \in GL(n;\IR)$ [/mm] und [mm] $\det [/mm] B <0$, so zeigen wir $B [mm] \in [/mm] AH$ :

Wir müssen zeigen: es ex. ein $C [mm] \in [/mm] H$ mit $B=AC.$ Wie finden wir den Kandidaten $C$ ? Da alle beteiligten Matrizen invertierbar sind, springt einem das gesuchte $C$ sofort ins Auge:

   [mm] $C=A^{-1}B.$ [/mm]

Dieses $C$ leistet das Gewünschte, denn es ist $C$ invertierbar,  $B=AC$ und

  $ [mm] \det [/mm] C= [mm] \det A^{-1} \cdot \det [/mm] B = [mm] \frac{1}{\det A} \cdot \det [/mm] B >0,$

also $C [mm] \in [/mm] H.$


Genauso zeigt man $B [mm] \in [/mm] HA.$

Bezug
                
Bezug
Spezielle lineare Gruppe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:35 Di 30.04.2019
Autor: sven1

Danke euch beiden für die Hilfe. Ehrlich gesagt ist es mir doch was peinlich dass ich selbst zu dumm war und es nicht gesehen habe.

Jetzt kann ich zumindest weiterarbeiten, danke.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de