www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Spiegelung
Spiegelung < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spiegelung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:32 Mi 23.05.2007
Autor: nixkoenner

Aufgabe
Sei [mm] e_1 [/mm] , [mm] e_2 \in \IR² [/mm] die Standardbasis von [mm] \IR² [/mm]  mit Standardskalarprodukt. Seien [mm] a_1:= e_1, a_2:= e_2 -e_1, a_3:= e_2, a_4:= e_1 [/mm] + [mm] e_2 [/mm] und [mm] s_i [/mm] die Spiegelung bzg. der Gerade, die zum Vektor [mm] a_i [/mm] orhogonal ist, i = 1,2,3,4.

Berechne die Gruppe [mm] (s_1, s_2, s_3, s_4) [/mm] die diese Spiegelungen erzeugen.

servus!
ich steh vor nem rätsel! Gibt es überhaupt ne lösung für diese komplizierte Spiegelung?
vielen dank für eure hilfe

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Spiegelung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:21 Fr 25.05.2007
Autor: angela.h.b.


> Sei [mm]e_1[/mm] , [mm]e_2 \in \IR²[/mm] die Standardbasis von [mm]\IR²[/mm]  mit
> Standardskalarprodukt. Seien [mm]a_1:= e_1, a_2:= e_2 -e_1, a_3:= e_2, a_4:= e_1[/mm]
> + [mm]e_2[/mm] und [mm]s_i[/mm] die Spiegelung bzg. der Gerade, die zum
> Vektor [mm]a_i[/mm] orhogonal ist, i = 1,2,3,4.
>  
> Berechne die Gruppe [mm](s_1, s_2, s_3, s_4)[/mm] die diese
> Spiegelungen erzeugen.
>  servus!
>  ich steh vor nem rätsel! Gibt es überhaupt ne lösung für
> diese komplizierte Spiegelung?

Hallo,

[willkommenmr].

Ich denke schon, daß es eine Lösung für die Aufgabe gibt.

Du schreibst "diese komplizierte Spiegelung". Wenn Du aber den Aufgebentext richtig durchliest, stellst Du fest, daß es sich um 4 Spiegelungen handelt, und diese sind alle eher leicht rechnerisch zu behandeln.

Ich gehe davon aus, daß Ihr bereits behandelt habt, wie man lineare Abbildungen duch Matrizen darstellt.

> Seien [mm][mm] a_1:= e_1, [/mm] [...] und [mm]s_i[/mm] die Spiegelung bzg. der Gerade, die zum Vektor [mm]a_i[/mm] orhogonal ist

Nun zeichne Dir zunächst [mm] a_1:=e_1 [/mm] in ein Koordinatensystem. Nun die Gerade, welche hierzu senkrecht ist. Dies ist die Gerade, die zur Spiegelung [mm] s_1 [/mm] gehört.
Nun stell die dazugehörige Matrix [mm] M_{s_1}auf. [/mm] In die erste Salte schreibst Du das Bild von [mm] e_1 [/mm] unter dieser Spiegelung, also [mm] s_1(e_1), [/mm] in die zweite Spalte kommt das Bild von [mm] e_2 [/mm] unter dieser Spiegelung.

>Seien [mm][mm] [...]a_2:= e_2 -e_1 [/mm] [...] und [mm]s_i[/mm] die Spiegelung bzg.
der Gerade, die zum Vektor [mm]a_i[/mm] orhogonal ist

Wie oben. Zeichne [mm] a_2 [/mm] ein. Welche Gerade ist dazu senkrecht? Dies ist Deine Spiegelachse für [mm] s_2. [/mm] Und wieder stell die Matrix [mm] M_{s_2} [/mm] auf. In die erste Spalte das Bild von [mm] e_1 [/mm] unter der Spiegelung [mm] s_2, [/mm] in die zweite das von [mm] s_2. [/mm]

Für die verbleibenden [mm] a_i [/mm] genauso.

Danach könntest Du sämtliche möglichen endlichen Produkte bilden und würdest so die gesuchte Gruppe finden.

Eine andere Möglichkeit wäre die, daß Du nach dem Aufstellen der Spiegelmatrizen erstmal überlegst, was Du herausbekommen möchtest.

Dir stehen ja 4 Spiegelungen zur Verfügunge, deren Achsen sich alle im Nullpunkt schneiden. Benachbarte Achsen bilden jeweils einen Winkel von 45°. Du solltest Dich daran erinnern, daß man die Hintereinanderausführung von Spiegelungen durch etwas anderes ersetzen kann.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de