Spiegelung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Hallo ich habe ein Problem Ich hoffe ihr könntet mir helfen. Zumindest wäre ich euch sehr verbunden!
Nach welchem Schema kann ich denn Bitte eine Spiegelung im [mm] \R^2 [/mm] erzeugen. Welche Lösungswege gibt es dafür? Ich verstehe das aus meinem Skript überhaupt nicht! Sagen wir mal ich habe die [mm] v_1=-4, v_2=-3 [/mm] dann muss ich ja eine Matrix finden welche eine Spiegelung an dieser Geraden [mm] \vektor{v_1\\v_2} [/mm] erzeugt. Aber wie geht das?
Ich habe das schon versucht mit folgender Formel. Wurde mir so geraten: [mm] A=(Ae_1 Ae_2) [/mm] mit [mm] e_1=\vektor{1\\0} [/mm] und [mm] e_2 \vektor{0\\1}. [/mm]
Könnte ich das damit berechnen???
Denn eigentlich sagt mir das ja nichts über A aus oder?
|
|
|
|
> Hallo ich habe ein Problem Ich hoffe ihr könntet mir
> helfen. Zumindest wäre ich euch sehr verbunden!
>
> Nach welchem Schema kann ich denn Bitte eine Spiegelung im
> [mm]\R^2[/mm] erzeugen. Welche Lösungswege gibt es dafür?
1. Möglichkeit: Abbildungsmatrix direkt bestimmen, indem Du deren Spaltenvektoren [mm] $A\vec{e}_1$ [/mm] und [mm] $A\vec{e}_2$ [/mm] bestimmst (dies ist das Verfahren, das man Dir empfohlen hat).
2. Möglichkeit: Diese Geradenspiegelung in drei Teilabbildungen zerlegen: [mm] $A_1$ [/mm] dreht die Gerade in die Richtung von [mm] $\vec{e}_1$. $A_2$ [/mm] spiegelt an der 1. Koordinatenachse (d.h. vertauscht einfach das Vorzeichen der 2. Koordinate). [mm] $A_3$ [/mm] dreht [mm] $\vec{e}_1$ [/mm] wieder in die Richtung der Geraden zurück: d.h. es ist [mm] $A_3=A_1^{-1}$). [/mm] Damit ist die gesuchte Matrix der Geradenspiegelung [mm] $A=A_1^{-1}\circ A_2\circ A_1$.
[/mm]
> Ich
> verstehe das aus meinem Skript überhaupt nicht! Sagen wir
> mal ich habe die [mm]v_1=-4, v_2=-3[/mm] dann muss ich ja eine
> Matrix finden welche eine Spiegelung an dieser Geraden
> [mm]\vektor{v_1\\v_2}[/mm] erzeugt. Aber wie geht das?
>
> Ich habe das schon versucht mit folgender Formel. Wurde mir
> so geraten: [mm]A=(Ae_1 Ae_2)[/mm] mit [mm]e_1=\vektor{1\\0}[/mm] und [mm]e_2 \vektor{0\\1}.[/mm]
>
> Könnte ich das damit berechnen???
Ja. Dann berechne halt in Gottes Namen die Koordinaten der Bilder von [mm] $\vec{e}_1$ [/mm] und [mm] $\vec{e}_2$ [/mm] bei der Geradenspiegelung (kann etwas mühselig werden: wohingegen man die Matrizen [mm] $A_1$, $A_2$ [/mm] und [mm] $A_1^{-1}$ [/mm] mit etwas Übung sehr schnell hinschreiben - und etwas weniger schnell miteinander multiplizieren kann). Deren Koordinaten sind gerade die Spaltenvektoren der gesuchten Matrix $A$ Deiner Geradenspiegelung.
> Denn eigentlich sagt mir das ja nichts über A aus oder?
Aber ja doch: durch seine zwei Spaltenvektoren ist $A$ doch eindeutig bestimmt.
|
|
|
|
|
Okay danke für die Antwort und für dein Bemühen. Aber leider kein Plan wie ich das anstellen soll. Hatte mir das leichter vor gestellt. In Gottes Namen was soll ich nur machen...
|
|
|
|
|
> Okay danke für die Antwort und für dein Bemühen. Aber
> leider kein Plan wie ich das anstellen soll. Hatte mir das
> leichter vor gestellt. In Gottes Namen was soll ich nur
> machen...
Hallo,
das Antworten fiele etwas leichter, wenn Du auch sagen würdest, welchen der vorsgestellten Wege Du nun verfolgen willst... Naja, wahrscheilich den Weg, den Du ursprünglich eingeschlagen hast.
Du willst also das Bild von [mm] e_1 [/mm] und [mm] e_2 [/mm] unter der Spiegelung an der geraden in Richtung v durch den Ursprung bestimmen, richtig?
Hast Du Dir schon eine Zeichnung angefertigt?
Du brauchst zunächst den Normalenvektor von v, ich nenne ihn [mm] v^{\perp}.
[/mm]
Dann die Schnittpunkte der Geraden durch [mm] e_i [/mm] in Richtung [mm] v^{\perp} [/mm] mit der Spiegelachse, die Abstände der [mm] e_i [/mm] vom Jeweilige Schnittpunkt, und dann den Punkt, welcher auf der zur Achse orthogonalen Geraden auf der anderen Seite liegt.
(Man benötigt hierzu lediglich Schulkenntnisse.)
Gruß v. Angela
|
|
|
|