www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Spiegelung an einer Ebene
Spiegelung an einer Ebene < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spiegelung an einer Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:54 Mo 29.09.2008
Autor: Beautiful_Day

Aufgabe
Gegeben ist ein Punkt A (2/0/10) und die Ebene E: 2x1+3x2+6x3=15

A wird an der Ebene E gespiegelt. Bestimmen sie die Koordinaten des Bildpunktes A' (gespiegelter Punkt). Welcher der Punkte A, A' liegt auf derselben Seite von E wie der Ursprung?

Guten Abend :)

wir haben diese Hausaufgabe von unsreem Lehrer bekommen und ich befürchte dass er sie morgen einsammeln wird :( leider hab ich allerdings überhaupt gar keine Ahnung, was ich tun soll. Kann jemand helfen? Vielen Dank im Voraus! ;)

LG

        
Bezug
Spiegelung an einer Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 21:01 Mo 29.09.2008
Autor: angela.h.b.


> Gegeben ist ein Punkt A (2/0/10) und die Ebene E:
> 2x1+3x2+6x3=15
>  
> A wird an der Ebene E gespiegelt. Bestimmen sie die
> Koordinaten des Bildpunktes A' (gespiegelter Punkt).
> Welcher der Punkte A, A' liegt auf derselben Seite von E
> wie der Ursprung?
>  Guten Abend :)
>  
> wir haben diese Hausaufgabe von unsreem Lehrer bekommen und
> ich befürchte dass er sie morgen einsammeln wird :( leider
> hab ich allerdings überhaupt gar keine Ahnung, was ich tun
> soll. Kann jemand helfen? Vielen Dank im Voraus! ;)

Hallo,

Du könntest das so machen:

aus der Koordinatengleichung der Ebene kannst Du leicht einen Normalenvektor ablesen, also einen vektor, der senkrecht zu der Ebene ist.

Stelle die Geradengleichung in Richtung der Normalen durch den Punkt A auf und berechne dann den Punkt F, in welchem die Gerade die Ebene durchstößt (Lofußpunkt).

Nun kannst Du [mm] \overrightarrow{AF} [/mm] berechnen. Wenn Du diesen Vektor zum Ortsvektor von F addierst, hast Du Deinen gespiegelten Punkt.

Gruß v. Angela


Bezug
                
Bezug
Spiegelung an einer Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:34 Mo 29.09.2008
Autor: Beautiful_Day

Okay vielen Dank schonmal ;)

Also ich hab nun als Normalenvektor (2/3/6). Für Punkt F hab ich (0/-3/4), stimmt das?
Das bekomme ich ja dann hin, aber was mache ich mit dem 2. Teil der Frage: "Welcher der Punkte A, A' liegt auf derselben Seite von E wie der Ursprung?"

Hat bitte jemand da einen Ansatz für mich?

LG, Vielen Dank!

Bezug
                        
Bezug
Spiegelung an einer Ebene: Hilfsebenen
Status: (Antwort) fertig Status 
Datum: 23:37 Mo 29.09.2008
Autor: Loddar

Hallo Beautiful_Day!


> Also ich hab nun als Normalenvektor (2/3/6). Für Punkt F
> hab ich (0/-3/4), stimmt das?

[ok]


>  Das bekomme ich ja dann hin, aber was mache ich mit dem 2.
> Teil der Frage: "Welcher der Punkte A, A' liegt auf
> derselben Seite von E wie der Ursprung?"

Bestimme die ebenen durch $A_$ bzw. $A'_$ , welche parallel zur gegebenen Ebene verlaufen (Tipp: Normalenvektor verwenden).

Anhand des jeweiligen Absolutgliedes $... \ = \ [mm] \red{d}$ [/mm] kannst Du dann entscheiden, welcher Punkt auf derselben Seite wie der Ursprung liegt.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de