www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Spiegelungsmatrizen,Drehung
Spiegelungsmatrizen,Drehung < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spiegelungsmatrizen,Drehung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:54 Sa 01.11.2014
Autor: sissile

Aufgabe
Sei [mm] 0\not= [/mm] v [mm] \in\IR^2 [/mm] gegeben. Betrachten Sie die Matrix
[mm] S_v:= [/mm] 1- [mm] \frac{2}{||v||^2}\pmat{ v_1^2 & v_1 v_2 \\ v_1v_2 & v_2^2} [/mm]

1) Welche geometrische Wirkung hat die lineare Abbildung, die von [mm] S_v [/mm] definiert wird?
2) Seien [mm] S_v, S_w [/mm] zwei solche Spiegelmatrizen. Seigen die dass [mm] D=S_v S_w [/mm] eine Drehung beschreibt. Um welchen Winken wird gedreht?


Hallo zusammen,
Punkt 1) hab ich erledigt.
[mm] S_v (P)=S_v(\vektor{x \\ y}) [/mm] = [mm] \pmat{ (1-\frac{2}{||v||^2} v_1^2)x -(\frac{2}{||v||^2} v_1 v_2) y \\ (-\frac{2}{||v||^2}v_1v_2)x+(1-\frac{2}{||v||^2}v_2^2)y} [/mm] = [mm] \vektor{x \\ y} [/mm] - [mm] \frac{2}{||v||^2} \vektor{v_1^2x+v_1v_2y\\ v_1v_2x+v_2^2y} =\vektor{x \\ y} [/mm] - [mm] \frac{2}{||v||^2} \vektor{v_1(v_1x+v_2y)\\ v_2(v_1x+v_2y}=\vektor{x \\ y} [/mm] - [mm] \frac{2(v_1x+v_2y)}{||v||^2} \vektor{v_1 \\ v_2} [/mm] = P - [mm] \frac{2}{||v||^2}v [/mm]
[mm] \gdw P-S_v [/mm] P =  [mm] \frac{2}{||v||^2}v [/mm]
d.h. [mm] P-S_v [/mm] P = [mm] \lambda [/mm] v mit  [mm] \lambda=\frac{2}{||v||^2} [/mm]
-> kollineare Vektoren


Der Abstand zwischen P und S_vP:
[mm] |\overrightarrow{S_vP P}|=|P-S_vP|=\lambda [/mm] v|= [mm] |\frac{2}{||v||^2}| [/mm] ||v||= [mm] \frac{2||}{||v||} [/mm]


Ein Punkt der Spiegelgeraden ist:
[mm] \vektor{s_1 \\ s_2} [/mm] = P - [mm] \frac{}{||v||} \frac{v}{||v||} [/mm]
Da ich da ja nur den halben Abstand möchte und den Richtungsvektor v muss ich normieren.
Geradenaufstellung der Spiegelgeraden in Normalform:
[mm] v_1 [/mm] x [mm] +v_2 [/mm] y=<v,P - [mm] \frac{}{||v||} \frac{v}{||v||}> [/mm]
[mm] \gdw v_1 [/mm] x [mm] +v_2 y=-\frac{}{||v||^2} [/mm] <v,v>
[mm] \gdw v_1 [/mm] x [mm] +v_2 [/mm] y=<v,P>-<v,P>
[mm] \gdw v_1 [/mm] x + [mm] v_2 [/mm] y=0

Es wird also an der Geraden,die normal zu v ist und durch den Ursprung geht gespiegelt.

2)
[mm] S_v S_w [/mm] = [mm] \pmat{ (1-\frac{2}{||v||^2} v_1^2)*(1-\frac{2}{||w||^2}w_1^2)+(-\frac{2}{||v||^2} v_1v_2)*(-\frac{2}{||w||^2} w_1w_2)&(1-\frac{2}{||v||^2}v_1^2)*(-\frac{2}{||w||^2} w_1w_2)+(-\frac{2}{||v||^2}*v_1v_2)*(1-\frac{2}{||w||^2}w_2^2) \\ (-\frac{2}{||v||^2}v_1v_2)*(1-\frac{2}{||w||^2}w_1^2)+(1-\frac{2}{||v||^2} v_2^2)*(-\frac{2}{||w||^2}w_1w_2)&(-\frac{2}{||v||^2}v_1v_2)*(-\frac{2}{||w||^2}w_1w_2)+(1-\frac{2}{||v||^2}v_2^2)*(1-\frac{2}{||w||^2}w_2^2)} [/mm]
Wie soll ich da irgendwie auf eine Drehung kommen??

Eine Drehung in [mm] \IR^2 [/mm] hat die Matrix:
[mm] M_{\phi} [/mm] = [mm] \pmat{ cos(\phi) & - sin(\phi) \\ sin(\phi) & cos(\phi) } [/mm]


Ich würde mich sehr über Hilfe freuen!
LG,
sissi

        
Bezug
Spiegelungsmatrizen,Drehung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:47 So 02.11.2014
Autor: leduart

Hallo
Wenn du überall die Einheitsvektoren in v Richtung, bzw in w Richtung einsetzt, sind das die Vektoren [mm] \bruch{v}{{v}}=v_e=\vektor{xcos(\alpha)\\ sin(\alpha)}, w_e [/mm] dasselbe mit [mm] \beta, [/mm]
alpha, [mm] \beta [/mm] = Winkel zur x-Achse.
damit könntest dir schon am Anfang viel  Schreibarbeit sparen.
setz das am Ende ein, oder deine schon vereinfachte Formel für Spiegelungen an einer Geraden  und denk auch [mm] =cos(\phi) [/mm]
Gruß leduart

Bezug
                
Bezug
Spiegelungsmatrizen,Drehung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:48 Di 04.11.2014
Autor: sissile

Hallo leduart,
danke für den Tipp!!


[mm] v_e=\vektor{cos(\alpha)\\ sin(\alpha)}, [/mm]
[mm] w_e=\vektor{cos(\beta)\\ sin(\beta)}, [/mm]

Dann ist [mm] S_{v_e} =\pmat{ -cos(2\alpha) & -sin(2\alpha) \\ -sin(2\alpha) & cos(2\alpha) } [/mm]
[mm] S_{v_e} S_{w_e} =\pmat{cos(2\alpha)cos(2\beta)+sin(2\alpha)sin(2\beta)&cos(2\alpha)sin(2\beta)-sin(2\alpha)cos(2\beta)\\sin(2\alpha)cos(2\beta)-cos(2\alpha)sin(2\beta)&sin(2\alpha)sin(2\beta)+cos(2\alpha)cos(2\beta)}=\pmat{cos(2\alpha-2\beta)&sin(2\alpha-2\beta)\\-sin(2\alpha-2\beta)&cos(2\alpha-2\beta)} [/mm]

Also um den Winkel [mm] 2(\alpha-\beta) [/mm] wird gedreht.
Korrekt?

LG,
sissi

Bezug
                        
Bezug
Spiegelungsmatrizen,Drehung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:39 Di 04.11.2014
Autor: leduart

Hallo
korrekt, du kannst es ja an einer Zeichnung leicht überprüfen.
Gruß leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de