www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Spur ist monoton wachsend
Spur ist monoton wachsend < Sonstiges < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spur ist monoton wachsend: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:25 Sa 30.06.2012
Autor: physicus

Hallo zusammen

Für zwei symmetrische [mm] $n\times [/mm] n$ Matrizen schreibe ich [mm] $X\le [/mm] Y$ genau dann wenn $Xv [mm] \cdot [/mm] v [mm] \le Yv\cdot [/mm] v$ für alle [mm] $v\in \mathbb{R}^n$. [/mm] Nun wurde ich gerne zeigen, dass [mm] $X\to \operatorname{Spur}(X)$ [/mm] monotone wachsend ist auf den symmetrischen [mm] $n\times [/mm] n$ Matrizen.

D.h. ich habe $Xv [mm] \cdot [/mm] v [mm] \le Yv\cdot [/mm] v$ und möchte zeigen, dass [mm] $\operatorname{Spur}(X)\le \operatorname{Spur}(Y)$ [/mm] ist. Ich nehme an, dass ich dafür nur ein geschickten Vektor $v$ wählen muss, so dass [mm] $Xv\cdot [/mm] v$ resp. [mm] $Yv\cdot [/mm] v$ gerade die Spur ergiebt. Allerdings sehe ich nicht, welcher Vektor dies ermöglicht. Hilfe wäre daher sehr willkommen.

Danke und Gruss

physicus

        
Bezug
Spur ist monoton wachsend: Antwort
Status: (Antwort) fertig Status 
Datum: 10:47 Sa 30.06.2012
Autor: ullim

Hi,

für v = i-ter Einheitsvektor folgt aus [mm] Xv*v\le{Yv*v} [/mm] das gilt

[mm] X_{ii}\le Y_{ii} [/mm] und daraus folgt [mm] Spur(X)\le{Spur(Y)} [/mm]

Bezug
                
Bezug
Spur ist monoton wachsend: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:07 Sa 30.06.2012
Autor: physicus

Hallo ullim

Danke für die schnelle Antwort. Kann ich irgendwie auch folgern, dass folgendes gilt:

[mm] $Y\le [/mm] X [mm] \Rightarrow x_{i,j}\ge y_{i,j}$ [/mm] ?

Danke und Gruss

Bezug
                        
Bezug
Spur ist monoton wachsend: Antwort
Status: (Antwort) fertig Status 
Datum: 11:24 Sa 30.06.2012
Autor: ullim

Hi,

nehme als Matrix [mm] A=\pmat{ 1 & 0 \\ 0 & 1 } [/mm] und als [mm] B=\pmat{ 0 & 1 \\ 1 & 0 } [/mm] dann gilt

[mm] A\ge{B} [/mm] aber [mm] A_{12}

Bezug
                                
Bezug
Spur ist monoton wachsend: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:33 Sa 30.06.2012
Autor: physicus

Hallo ullim

Wie kann ich dann folgendes zeigen:

Sei $A(x)$ eine Matrix, d.h. [mm] $a_{i,j}(x)$ [/mm] hängt von $x$ ab! $A$ sei auch symmetrisch. Dann möchte ich zeigen, dass [mm] $-\operatorname{Spur}(A(x)X) \le [/mm] - [mm] \operatorname{Spur}(A(x)Y)$ [/mm] für alle [mm] $Y\le [/mm] X$, genau dann wenn $A(x)$ nicht negativ ist.
Ich habe so begonnen:

[mm] $-\operatorname{Spur}(A(x)X)\le \operatorname{Spur}(A(x)Y)\gdw -\sum_{i,j=1}^na_{i,j}(x)x_{i,j}\le -\sum_{i,j=1}^na_{i,j}(x)y_{i,j}\gdw \sum_{i,j=1}^na_{i,j}(x)(y_{i,j}-x_{i,j})\le [/mm] 0$

Ich habe mir gedacht, wenn ich zeigen kann, dass [mm] $(y_{i,j}-x_{i,j})$ [/mm] immer negativ ist, dann muss [mm] $a_{i,j}(x)$ [/mm] immer positiv sein.

Bezug
                                        
Bezug
Spur ist monoton wachsend: Antwort
Status: (Antwort) fertig Status 
Datum: 18:17 So 01.07.2012
Autor: ullim

Hi,

1.)

wenn [mm] A\ge{0}, X\ge{0} [/mm] und [mm] Y\ge{0} [/mm] gilt muss gezeigt werden

[mm] Spur(A*X)\ge{Spur(A*Y)} [/mm] was identisch ist zu [mm] Spur(A*\Delta)\ge{0} [/mm] mit [mm] \Delta=X-Y [/mm]

[mm] \Delta [/mm] ist symetrisch und es gilt [mm] \Delta\ge{0} [/mm] und ebenso ist A symetrisch und es gilt [mm] A\ge{0} [/mm]

Für symetrische positiv semidefinite Matrizen gibt es Zerlegungen mit

[mm] A=U^t*U [/mm] und [mm] \Delta=V^t*V. [/mm] Also gilt

[mm] Spur(A*\Delta)=Spur(U^t*U*V^t*V)=Spur\left(U*V^t*(U*V^t)^t\right)\ge{0} [/mm] was zu zeigen war.


2.)

Wenn [mm] Spur(A*B)\ge{0} [/mm] für alle [mm] B\ge{0} [/mm] gilt, folgt für [mm] B=v*v^t [/mm] wobei v ein Eigenvektor von A zum Eigenvektor [mm] \lambda [/mm] ist

[mm] 0\le Spur(A*(v*v^t)=\summe_{i=1}^{n}\summe_{j=1}^{n}A_{ij}*v_i*v_j=v^t*A*v=\lambda*v^t*v [/mm]

Daraus folgt [mm] \lambda\ge{0} [/mm] also ist [mm] A\ge{0} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de