Spurgeradenberechnung < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:51 Mo 08.05.2006 | Autor: | M.M. |
Aufgabe | Bestimme die Schnittgerade der Ebene E: x= (1/0/3)+r(1/0/0)+s(1/1/0) und der Ebene E*: x= (2/3/2)+u(0/1/1)+v(2/0/1) |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo!
Wenn ich die Spurgerade von diesen zwei Ebenen errechnen möchte, muss ich sie ja gleisetzen. Nachdem ich dies getan habe, bekomme ich drei Gleichungen mit vier Unbekannten heraus. Zwei Unbekannte müssen wegaddiert werden und von den zwei Übriggebliebenen muss ein Zusammenhang hergestellt werden.
Meine Frage hierzu ist: Kann ich eine Gleichung, die noch nicht verändert wurde/mit einer zweiten Gleichung addiert wurde, mit eine Gleichung, die bereits aus zwei vorherigen Gleichungen entstanden ist, addieren um die zweite Unbekannte "weg zu bekommen"?
Die Gleichungen wären ja:
I. r+s -2v=1
II. s-u =3
III. u+v =1
Ich würde dann II. und III. so addieren, dass u herausfällt:
II./III. s+v=4
Kann ich diese veränderte Gleichung nun mit der Gleichung I. addieren, damit v herausfällt?
Wenn nicht, wie komme ich sonst weiter? Wenn mir jemand diese Frage beantworten könnte, würde mir das wirklich sehr helfen, ich schreibe nämich schon morgen meine Kausur.
(Ich wusste nicht, wie man die Vektoren richtig schreiben kann, habe sie deshalb in einer Klammer geschrieben)
Vielen Dank im Voraus, Marie
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:32 Di 09.05.2006 | Autor: | Sigrid |
Hallo Marie,
> Bestimme die Schnittgerade der Ebene E: x=
> (1/0/3)+r(1/0/0)+s(1/1/0) und der Ebene E*: x=
> (2/3/2)+u(0/1/1)+v(2/0/1)
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Hallo!
> Wenn ich die Spurgerade von diesen zwei Ebenen errechnen
> möchte, muss ich sie ja gleisetzen. Nachdem ich dies getan
> habe, bekomme ich drei Gleichungen mit vier Unbekannten
> heraus. Zwei Unbekannte müssen wegaddiert werden und von
> den zwei Übriggebliebenen muss ein Zusammenhang hergestellt
> werden.
> Meine Frage hierzu ist: Kann ich eine Gleichung, die noch
> nicht verändert wurde/mit einer zweiten Gleichung addiert
> wurde, mit eine Gleichung, die bereits aus zwei vorherigen
> Gleichungen entstanden ist, addieren um die zweite
> Unbekannte "weg zu bekommen"?
> Die Gleichungen wären ja:
>
> I. r+s -2v=1
> II. s-u =3
> III. u+v =1
>
> Ich würde dann II. und III. so addieren, dass u
> herausfällt:
>
> II./III. s+v=4
>
> Kann ich diese veränderte Gleichung nun mit der Gleichung
> I. addieren, damit v herausfällt?
Das ist erlaubt. Du multiplizierst Gleichung II./III. mit 2 und addierst zu Gleichung I.
Du hättest dir die Rechnung aber auch schenken können, denn mit Gleichung III. hast du ja bereits eine Gleichung, in der nur die Parameter einer Ebnenengleichung vorkommen. Also u=1-v in die Gleichung der Ebene E* einsetzen, und du erhälst die Gleichung der Schnittgeraden.
Gruß
Sigrid
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:25 Di 09.05.2006 | Autor: | M.M. |
Hallo, vielen Dank für deine Hilfe, diese Frage habe ich mir immer mal wieder gestellt, nie aber eine richtige Antwort bekommen, jetzt vergesse ich es nicht mehr! Das mit der 3. Gleichung ist mir gar nicht aufgefallen, die Aufgabe war ja eigentlich doch ziemlich einfach...
Vielen Dank, Marie
|
|
|
|