www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Spurpunkte und Spurgeraden
Spurpunkte und Spurgeraden < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spurpunkte und Spurgeraden: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:55 Sa 17.05.2008
Autor: Krischy

Aufgabe
Die Schnittpunkte einer Ebene mit den Koordinatenachsen nennt man Spurpunkte. Die Verbindungslinien je zweier Spurpunkte in einer Koordinatenebene heißen Spurgeraden.
Berechne die Spurpunkte und die Spurgeraden der folgenden Ebenen und zeichne Die Ebenen anschließend.
E1:x= [mm] \vektor{2 \\ -3 \\ 3}+ \lambda\vektor{4 \\ 0 \\ -2}+ \mu\vektor{4 \\ -3 \\ 0} [/mm]
E2:x= [mm] \vektor{-4 \\ 6 \\ 2}+ \lambda\vektor{4 \\ -3 \\ 0}+ \mu\vektor{-4 \\ 3 \\ 2} [/mm]

wir sollen das mit der Matrizen form berechnen. Wäre nett wenn mir jemand das komplett vorrechnen könnte, ich komme auf keine richtigen ergebnisse. Montag schreibe ich Mathe und ich muss ne gute Note schreiben. Vielen dANK schon mal.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Spurpunkte und Spurgeraden: Antwort
Status: (Antwort) fertig Status 
Datum: 15:24 Sa 17.05.2008
Autor: Mathehelfer

Hi,

also es gibt verschiedene Wege, wie du so etwas berechnen kannst. Wenn du noch nicht die Achsenabschnittsform (AAF) kennst, dann musst du die Spurpunkte bestimmen, indem du deine Ebenen mit den Koordinatenachsen schneiden lässt. Überlege dir dazu die Geradengleichung und setze sie mit der Ebene gleich. Anschließend setzt du die Parameter ein und erhälst den Spurpunktortsvektor. So Verfährst du entsprechend mit den anderen Punkten. Die Spurgerade ergibt sich dann jeweils durch zwei Punkte.

Wenn du die AAF kennst, geht es viel einfacher: Du bringst die Ebene in Koordinatenform und weißt folgenden Zusammenhang:
[mm]E: ax_{1}+bx_{2}+cx_{3}=d[/mm], dann ist der Spurpunkt mit der [mm]x_{1}[/mm]-Achse: [mm]A_{1}(\bruch{d}{a}|0|0)[/mm].

Dass dir jemand hier alles komplett vorrechnen soll, ist schon eine etwas unverschämte Forderung, zudem du den Forenregeln zuwider keinen Ansatz geschildert hast! Also: selbst etwas überlegen und sagen, an welcher Stelle es konkret noch hakt!

Bezug
                
Bezug
Spurpunkte und Spurgeraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:54 So 18.05.2008
Autor: Krischy

Vielen dank. Das mit den Koordinatenachsen habe ich hin bekommen und konnte die Spurpunkte ermitteln, allerdings weiß ich nicht wie ich die Spurgerade ausrechnen kann.ich kann den Anstand zweier Vektoren ermitteln... aber das müsstee dann nicht die Gerade sein oder?

Bezug
                        
Bezug
Spurpunkte und Spurgeraden: Antwort
Status: (Antwort) fertig Status 
Datum: 19:58 So 18.05.2008
Autor: Maggons

Hallo!

Du musst doch, wenn du bereits die (bis zu) 3 Spurpunkte gefunden hast, eine Gerade aufstellen.

Nimm einen Spurpunkt als Aufpunktsvektor und den Vektor von diesem Spurpunkt zu einem anderen als Richtungsvektor.

Das hier hat nichts mit dem Abstand zu tun; aber den Vektor, den du für das Ermitteln des Abstandes benutzen würdest, musst du als Richtungsvektor der Spurgeraden nutzen.

Lg

Bezug
                        
Bezug
Spurpunkte und Spurgeraden: Tipp
Status: (Antwort) fertig Status 
Datum: 20:04 So 18.05.2008
Autor: jedi84

Wenn du die Spurpunkte hast, z.B. den auf der x-Achse und den auf der y-Achse:

Dann nimmst du einen der Punkte als Stützvektor für eine Gerade und die Differenz der beiden Punkte als Rechtungsvektor.

Bsp:
Spurpunkt auf x-Achse: (12,0,0)
Spurpunkt auf y-Achse: (0,6,0)

Geradengleichung:
[mm] \vektor{x\\ y\\ z} \mapsto \vektor{12 \\ 0 \\0} [/mm] + [mm] t\cdot \vektor{12-0 \\ 0-6 \\ 0-0} [/mm]


Bezug
                                
Bezug
Spurpunkte und Spurgeraden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:21 So 18.05.2008
Autor: Krischy

Vielen Dank. Habt mir echt geholfen ;) da kann die Mathearbeit ja gut werden ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de