www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Stabilität
Stabilität < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stabilität: Korrektur
Status: (Frage) überfällig Status 
Datum: 16:11 Sa 29.05.2010
Autor: Lati

Aufgabe
Betrachte das zweidimensionale DGL-System

[mm] x'=y+t*x-x^3 [/mm]
y'=-x

a) Zeige,dass für [mm] t\le0 [/mm] der Gleichgewichtspunkt (0,0) asymptotisch stabil ist.

b) Zeige, dass für t>0 der Gleichgewichtspunkt (0,0) instabil ist.

Hallo zusammen,

ich hab mal bei der Augabe damit gestartet die Jacobi-Matrix auszurechnen und erhalte:

[mm] \pmat{ t & 1 \\ -1 & 0 } [/mm]
Von dieser Matrix hab ich mir mit Matlab die EW ausgeben lassen und da kommt dann [mm] t_{1,2}= [/mm] t/2 [mm] \pm \bruch{(t/2-4)^{1/2}}{2} [/mm] raus.

Jetzt hatten wir in der VL das Kriterium über die Eigenwerte also besser über den Realteil der EW zu argumentieren, aber ich bin mir gar nicht sicher ob ich das hier machen darf. Wenn nein wärs gut wenn mir das einer sagen könnte und vielleicht noch ne andere Idee hätte, weil ich hab keine...

Und dann gibt es ja noch ein weiteres Problem, weil eigentlich darf man ja nur für t echt kleiner null auf die asymptische Stabilität schließen, was mach ich dann für die 0?

Vielen Dank für die Hilfe!

Grüße

        
Bezug
Stabilität: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Mo 31.05.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de