Stabilität lineare DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:14 So 18.12.2011 | Autor: | Harris |
Aufgabe | Für das Differentialgleichungsystem
[mm] $\vektor{x\\y}'=\pmat{ -1 & 2e^{2t} \\ 0 & -2 }$\vektor{x\\y}
[/mm]
gebe man alle Gleichgewichtspunkte an und überprüfe sie auf Attraktivität. |
Hi!
Vielleicht ne blöde Frage, aber ich stelle sie trotzdem.
Erst zur Bestimmung aller Gleichgewichtslösungen: Die Gleichgewichtslösungen sind genau die Punkte [mm] $(x_0,y_0)\in\IR^2$, [/mm] für die die Ableitungen verschwinden. Aus der 2. Komponente folgt $y=0$, aus der ersten $x=0$, also ist nur die Nulllösung ein Gleichgewicht.
Aufgrund der Eigenwerte könnte man jetzt denken, die Nulllösung ist asymptotisch stabil, also auch attraktiv.
ABER: Löst man das ganze, so erhält man die allgemeine Lösung
[mm] $\vektor{x(t)\\y(t)}=a\vektor{e^{-t}\\0}+b\vektor{2\\e^{-2t}}.$
[/mm]
Für $b=0$ läuft jede Lösung zum Nullpunkt. Für [mm] $t\rightarrow\infty$ [/mm] läuft für [mm] $b\neq [/mm] 0$ die Lösung nach [mm] $\vektor{2b\\0}$, [/mm] also ist das Ganze doch nicht attraktiv, oder?
Grüße, Harris
|
|
|
|
> Für das Differentialgleichungsystem
> [mm]\vektor{x\\y}'=\pmat{ -1 & 2e^{2t} \\ 0 & -2 }[/mm][mm] \vektor{x\\y}[/mm]
>
> gebe man alle Gleichgewichtspunkte an und überprüfe sie
> auf Attraktivität.
> Hi!
>
> Vielleicht ne blöde Frage, aber ich stelle sie trotzdem.
so blöd scheint mir die Frage nicht
>
> Erst zur Bestimmung aller Gleichgewichtslösungen: Die
> Gleichgewichtslösungen sind genau die Punkte
> [mm](x_0,y_0)\in\IR^2[/mm], für die die Ableitungen verschwinden.
> Aus der 2. Komponente folgt [mm]y=0[/mm], aus der ersten [mm]x=0[/mm], also
> ist nur die Nulllösung ein Gleichgewicht.
korrekt
>
> Aufgrund der Eigenwerte könnte man jetzt denken, die
> Nulllösung ist asymptotisch stabil, also auch attraktiv.
Der Satz, dass man asymptotische Stabilität an den Eigenwerten "ablesen" kann, gilt allgemein nur für autonome Systeme. Das vorliegende System ist jedoch nichtautonom und eben ein Beispiel dafür, dass sich die Stabilitätsaussage nicht ohne weiteres auf den nichtautonomen Fall übertragen lässt.
>
> ABER: Löst man das ganze, so erhält man die allgemeine
> Lösung
>
> [mm]\vektor{x(t)\\y(t)}=a\vektor{e^{-t}\\0}+b\vektor{2\\e^{-2t}}.[/mm]
>
> Für [mm]b=0[/mm] läuft jede Lösung zum Nullpunkt. Für
> [mm]t\rightarrow\infty[/mm] läuft für [mm]b\neq 0[/mm] die Lösung nach
> [mm]\vektor{2b\\0}[/mm], also ist das Ganze doch nicht attraktiv,
> oder?
richtig. Da du die allgemeine Lösung explizit bestimmen kannst, kannst du das Stabilitätsverhalten anhand dieser überprüfen. Die Nulllösung ist stabil, aber nicht attraktiv.
>
> Grüße, Harris
|
|
|
|