www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Stammfkt.
Stammfkt. < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:23 Di 25.03.2008
Autor: Amy1988

Hallo!

So...mir macht mal wieder eine Stammfunktion zu schaffen :-(
Die Aufgabenstellung ist, zu beweisen bzw. zu widerlegen, dass es sich bei einer gegebenen Stammfunktion um die der Ausgangsfunktion handelt.
Der Ansatz ist mir klar
F'(x) = f(x)
Nur beim Ableiten von F(x) habe ich ein paar Probleme.
Vielleicht schaut ja nochmal jemand drüber...

Es geht um diese Funktionen
f(x) = ln(3+x) - ln(3-x)

F(x) = (3+x)*ln(3+x) - (3-x)*ln(3-x)

Ich habe folgendes daraus gemacht :-)

F'(x) = [mm] 1*ln(3+x)*\bruch{1}{(3+x)}*(3-x)*ln(3-x) [/mm] + [mm] (3+x)*ln(3+x)*(-1)*ln(3-x)*\bruch{-1}{(3-x)} [/mm]

Da mir das ziemlich komisch vorkommt habe ich erstmal nciht weitergemacht...Aber ich wüsste auch nicht wirklich, wie ich das weitermachen soll?!

HILFE!!! :-)

LG, Amy

        
Bezug
Stammfkt.: viel zu viel
Status: (Antwort) fertig Status 
Datum: 15:32 Di 25.03.2008
Autor: Loddar

Hallo Amy!


Du packst da viel zu viel in die Ableitung hinein. Gemäß MBProduktregel mit MBKettenregel gilt:

$$F'(x) \ = \ [mm] \left[1*\ln(3+x)+(3+x)*\bruch{1}{3+x}*1\right]-\left[(-1)*\ln(3-x)+(3-x)*\bruch{1}{3-x}*(-1)\right] [/mm] \ = \ ...$$

Gruß
Loddar


Bezug
                
Bezug
Stammfkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:57 Di 25.03.2008
Autor: Amy1988

Hm...
Okay, also man berechnet ja im Endeffekt 2 Produkte, richtig?
(3+x)*ln(3+x) und (3-x)*ln(3-x)


Wenn ich ln(3+x) beispielsweise ableite, dann gehe ich nach der Kettenregel vor, nicht wahr?!
Erst die Ableitung von ln(3-x) das ist dann [mm] \bruch{1}{(3+x)}?! [/mm]
Und die 1 kommt aus der Ableitung von 3+x?!
Wenn ja, dann habe ich das so verstanden...

Ich habe mal weitergerechnet!
F'(x) = ln(3+x)+1 - ln(3-x)-1
F'(x) = ln(3+x) - ln(3-x) = f(x)

LG und vielen Dabk schonmal
AMY

Bezug
                        
Bezug
Stammfkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 16:58 Di 25.03.2008
Autor: Steffi21

Hallo,

Loddar hat eigentlich alles berechnet

1. Term: (3+x)*ln(3+x) wird nach Produktregel abgeleitet

u'*v+u*v'

[mm] 1*ln(3+x)+(3+x)*\bruch{1}{3+x} [/mm]

u=3+x
u'=1

v=ln(3+x)
[mm] v'=\bruch{1}{3+x} [/mm]

2. Term (3-x)*ln(3-x)

u'*v+u*v'

[mm] (-1)*ln(3-x)+(3-x)*(-1)*\bruch{1}{3-x} [/mm]

u=3-x
u'=-1

v=ln(3-x)
[mm] v'=(-1)*\bruch{1}{3-x} [/mm]

der Faktor (-1) entsteht durch die innere Ableitung (3-x)

[mm] F'(x)=\left[1*ln(3+x)+(3+x)*\bruch{1}{3+x}\right]-\left[(-1)*ln(3-x)+(3-x)*(-1)*\bruch{1}{3-x}\right] [/mm]

[mm] F'(x)=\left[ln(3+x)+1\right]-\left[-ln(3-x)-1\right] [/mm]

F'(x)= ...

jetzt schaffst du es alleine

Steffi










Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de