www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Stammfkt. Aufgaben
Stammfkt. Aufgaben < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfkt. Aufgaben: Korrektur
Status: (Frage) beantwortet Status 
Datum: 17:05 Sa 30.06.2007
Autor: johnypfeffer

hi kann mal bitte jemand die aufgaben durchsehen ob da irgentwo ein fehler ist

ist ein winword dokument
hier der link
http://www.mitglied.lycos.de/jfkonline/mathe_2a.doc

gruss johny

        
Bezug
Stammfkt. Aufgaben: Teilantwort
Status: (Antwort) fertig Status 
Datum: 17:27 Sa 30.06.2007
Autor: ONeill

Hallo!
Also bei a und b sehe ich den Fehler darin, dass du folgendes machst:
[mm] \wurzel{5x+3}=(5x+3)^{0,5} [/mm]
Soweit ist das in Ordnung, dann kommt aber
[mm] \wurzel{5x+3}=(5x+3)^{0,5}=(5x)^{0,5}+3^{0,5} [/mm] und das darf man nicht machen!

c ist richtig

Das sind so die Sachen, die ich auf den ersten Blick gesehen habe, bei dem Rest bin ich unsicher.
Gruß ONeill

Bezug
        
Bezug
Stammfkt. Aufgaben: 2d.) und 2e.)
Status: (Antwort) fertig Status 
Datum: 17:50 Sa 30.06.2007
Autor: Loddar

Hallo Johnny!


Die Aufgaben d.) und e.) hast Du richtig gelöst.

Alerdings etwas mit den verschiedenen Variablenbezeichnungen aufpassen: da vermixt Du ab und zu die Variable $t_$ mit $da_$ usw.


Bei Aufgabe f.) solltest Du mal den Nenner substituieren ...


Gruß
Loddar


Bezug
        
Bezug
Stammfkt. Aufgaben: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:58 Sa 30.06.2007
Autor: johnypfeffer

Viele Dank für die Mühe!

habe die Fehler berichtigt

es sind jetzt aber noch weitere Aufgaben dazu gekommen alles was noch durch gesehen werden ist rot markiert

Aufgabe 3) ist noch nicht fertig bin mir aber auch nicht sicher ob der eingeschlagene Weg richtig ist

der neue link zu den Aufgaben ist
http://www.mitglied.lycos.de/jfkonline/Integrationsuebungen.doc

MFG Johny

Bezug
                
Bezug
Stammfkt. Aufgaben: Antwort
Status: (Antwort) fertig Status 
Datum: 19:27 Sa 30.06.2007
Autor: Stefan-auchLotti


> Viele Dank für die Mühe!
>  
> habe die Fehler berichtigt
>  
> es sind jetzt aber noch weitere Aufgaben dazu gekommen
> alles was noch durch gesehen werden ist rot markiert
>  
> Aufgabe 3) ist noch nicht fertig bin mir aber auch nicht
> sicher ob der eingeschlagene Weg richtig ist
>  
> der neue link zu den Aufgaben ist
>  
> http://www.mitglied.lycos.de/jfkonline/Integrationsuebungen.doc
>  
> MFG Johny

Hi,

erst mal vorab: du kannst doch durch erneutes Ableiten deiner Stammfunktion ermitteln, ob sie korrekt berechnet ist.

2a)

Dort hast du einen Fehler beim Integrieren von [mm] $z^{0{,}5}$ [/mm] gemacht. Überleg' noch mal, was genau du tun musst.

2b)

[ok]

2f)

[ok]

2g)

[mm] $\bruch{1}{2}*\bruch{2}{1}=????$ [/mm]

2h)

[ok]

2i)

[ok]

2j)

[ok]

2k)

Die Regel, die du angewendet hast, ist zwar wahr, aber ist jedoch hier unsinnig: Du willst nicht die Stammfunktion einer Funktion, wo die Wurzel im Nenner steht, sondern von einer Funktion, wo jene im Zähler ist!

Grüße, Stefan.

Bezug
                
Bezug
Stammfkt. Aufgaben: Antwort
Status: (Antwort) fertig Status 
Datum: 19:43 Sa 30.06.2007
Autor: schachuzipus

Hallo Johnny,

kleine Ergänzung zu Stefans Antwort:

zu 2k)

Wenn du direkt den gesamten Ausdruck unter der Wurzel substituiert, also

[mm] $z:=2x^2-1$ [/mm] substituierst, reduziert sich das Integral auf [mm] \frac{1}{4}\int{\sqrt{z}dz}=\frac{1}{4}\int{z^{\frac{1}{2}}dz} [/mm]

Auch bei 2g) den ganzen Ausdruck unter der Wurzel da substituieren, dann brauchste keine komplizierten Regeln mit a und b in der Wurzel, das geht dann ganz geradeaus.

Noch eine Bem. zu 2f):

Das ist ein logarithmisches Integral, also eines von der Form [mm] \int{\frac{f'(x)}{f(x)}dx} [/mm]

Und da ist die Ableitung immer [mm] \ln|f(x)| [/mm] + C


Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de