www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Stammfunktion
Stammfunktion < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion: PBZ komplexe Nullstellen
Status: (Frage) beantwortet Status 
Datum: 21:23 Mo 10.04.2006
Autor: sunshinenight

Aufgabe
  [mm] \integral_{a}^{b}{\bruch{2x^{2}+9x+12}{x^{2}+6x+10} dx} [/mm]

Wir sollen hier die Partialbruchzerlegung anwenden. Außerdem ist nur die Stammfunktion mit konstantem Faktor c wichtig, also keine Berechnung mithilfe der Grenzen

zunächst habe ich mal die Polynomdivision angewendet und erhalten:
[mm] 2-\bruch{3x+8}{x^{2}+6x+10} [/mm]
Nun muss ich das ja aufspalten für die PBZ, aber ich weiss nicht wie das bei einer komplexen Nullstelle funktioniert. In den Unterlagen eines Freundes (E-Technik Student) habe ich folgendes gefunden:
[mm] \bruch{3x+8}{x^{2}+6x+10}=\bruch{A_{1}}{x+3-i}+\bruch{A_{2}}{x+3+i} [/mm]

das würde für
[mm] A_{1}= \bruch{-1+3i}{2i} [/mm]
[mm] A_{2}= \bruch{1+3i}{2i}=\bruch{3}{2}-\bruch{1}{2}i [/mm]
ergeben.

Aber ich tu mich grad schwer damit, da man das ja nicht wie gewohnt einfach für [mm] A_{1} [/mm] und [mm] A_{2} [/mm] einsetzen kann, oder? Zumindest wüsste ich dann nicht wie ich integrieren soll...

Wäre toll, wenn mir jemand auf die Sprünge hilft!

mfg
sunshinenight

        
Bezug
Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:29 Mo 10.04.2006
Autor: prfk

Moin

Also ob A reell oder complex ist, ist ja egal. Es ist ja von x unabhängig und somit für das Integral irrelevant. Ob deine PBZ jetzt richtig ist, weiß ich nicht. PBZ kann ich leider nicht...

Wenn es dir bloß um die Stammfunktion geht, kann man die auch einfach in nem buch nachschlagen.  Wenn du mit der komplexen Zahl im Nenner Probleme hast, dann substituir doch einfach 3+i=z und 3-i=z*. Das macht das ganze dann ein bisschen übersichtlicher.

Bezug
                
Bezug
Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:08 Di 11.04.2006
Autor: sunshinenight

An sich habe ich kein Problem mit komplexen Zahlen, da man die ja wie eine konstante behandeln würde.
Als Lösung habe ich eine Stammfunktion vorgegeben, habe aber schon gemerkt, dass es manchmal auch mehrere Möglichkeiten einer richtigen Stammfunktion gibt. Mich stört bei der Vorgehensweise von oben das i, da ich nicht weiss wie ich das Kontrollieren soll, ob ich da richtig gerechnet habe?
Lösung aus dem Lösungsbuch ist:
[mm] 2x-\bruch{3}{2}ln(x^{2}+6x+10)+arctan(x+3) [/mm]

Wenn ich die ganze Sache ableite, erhalte ich meine Funktion, die ich integrieren soll. Aber ich kann ja in einer Klausur auch nicht davon ausgehen, dass ich immer diese Möglichkeit habe...
Wäre also nett, wenn mir noch mal jemand etwas zu dem Weg von Integral zu Stammfunktion sagen könnte.

mfg
sunshinenight

Bezug
                        
Bezug
Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 09:28 Di 11.04.2006
Autor: metzga

Hallo,

>  Lösung aus dem Lösungsbuch ist:
>  [mm]2x-\bruch{3}{2}ln(x^{2}+6x+10)+arctan(x+3)[/mm]

Diese Lösung ist reell und du hast komplex gerechnet deswegen kommst
du auch nicht auf die gleiche Lösung, das heißt aber nicht dass deine falsch ist.

[mm]\int 2- \frac{3x+8}{x^2+6*x+10}\mathrm{d}x =\int 2- \frac{3}{2}*\frac{2x+6}{x^2+6*x+10}-\frac{-1}{x^2+6*x+10}\mathrm{d}x[/mm]

Bei dem Schritt habe ich im Zähler -1 und 1 dazugezählt danach auf zwei Brüche
aufgespalten und beim ersten 3/2 ausgeklammert damit steht hier im Zähler die
Ableitung vom Nenner und das kann man leicht mit ln integrieren.

[mm]\Rightarrow =2*x - \frac{3}{2}*\ln(x^2+6*x+10)+ \int \frac{1}{x^2+6*x+10}\mathrm{d}x[/mm]

So musst noch in der Formelsammlung nachschauen, da wird es ein Stammfunktion geben mit:

[mm]\int \frac{a}{1+(a*x+b)^2}=\arctan(a*x+b) [/mm]

damit folgt aus [mm]\int \frac{1}{x^2+6*x+10}\mathrm{d}x=\int \frac{1}{1+(x+3)^2}\mathrm{d}x=arctan(x+3)[/mm]

Damit kommst auf deine Stammfunktion, die ist halt reell gerechnet.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de