www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Stammfunktion
Stammfunktion < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:28 Mi 12.12.2007
Autor: moody

Aufgabe
[mm] \integral_{1}^{-1}{(\bruch{1}{3}*x - 4)^3 dx} [/mm]

Davon soll man das Integral berechnen.

Als Stammfunktion habe ich: [mm] \bruch{\bruch{1}{3}x - 4}{4} [/mm] * [mm] \bruch{x^3}{6}-4x [/mm]

Und dann muss man da ja 1 einsetzen und davon dasselbe mit -1 eingesetzt abziehen.

Dabei komme ich auf ~ -511

Ich denke mal meine Stammfunktion ist falsch.

Kann jmd. helfen?

        
Bezug
Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:32 Mi 12.12.2007
Autor: Event_Horizon

Hallo!

Deine Stammfunktion sieht in der Tat merkwürdig aus.

Ich würde einfach diese bin. Formel ausrechnen, das geht am schnellsten / sichersten.


(a-b)³=a³-3a²b+3ab²-b³

Bezug
        
Bezug
Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:58 Mi 12.12.2007
Autor: defjam123

Hey moody!

Ich würd dir bei der Aufgabe raten zu substituieren. Hier hast du zwar Glück das nach der Klammer hoch drei steht und dir mit dem paskalischen Dreieck die binomische Formel herleiten kannst, aber wenn da hoch 99 z.B. stehen würde, wärs nicht mehr so einfach. Also mit Substituition die Stammfunktion lösen, damit du schwierigere Aufgaben auch auf die Reihe bekommst. Ich denke das möchte auch der Lehrer sehen.

Gruss

Bezug
        
Bezug
Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 00:38 Do 13.12.2007
Autor: HJKweseleit


> [mm]\integral_{1}^{-1}{(\bruch{1}{3}*x - 4)^3 dx}[/mm]
>  

Die Berechnung des Integrals ist immer mit der Suche nach der Stammfkt. verknüpft. Wie könnte diese heißen? Mache einen Versuch. Führt er zum Erfolg, ist das Problem gelöst, wenn nicht, musst du einen anderen Weg suchen (z.B. kompliziertes Auflösen der Klammern).

[mm] (\bruch{1}{3}*x [/mm] - [mm] 4)^3 [/mm] ist die Ableitung einer zu suchenden Fkt. F(x). Welche bietet sich an? Natürlich
[mm] F_1(x)=(\bruch{1}{3}*x [/mm] - [mm] 4)^4 [/mm]
Machen wir die Probe durch Ableiten:

Die Ableitung gibt [mm] 4*(\bruch{1}{3}*x [/mm] - [mm] 4)^3 [/mm] *innere Ableitung = [mm]4*(\bruch{1}{3}*x - 4)^3 *\bruch{1}{3} =\bruch{4}{3}*(\bruch{1}{3}*x - 4)^3 [/mm], ergibt also das [mm] \bruch{4}{3}-fache [/mm] des Integranden. Deshalb korrigieren wir nun [mm] F_1(x) [/mm] um den Faktor [mm] \bruch{3}{4} [/mm] zu
[mm] F(x)=\bruch{3}{4}*(\bruch{1}{3}*x [/mm] - [mm] 4)^4. [/mm]

Leitet man diese Fkt. nochmals zur Kontrolle ab, ergibt sich der Integrand.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de