www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Stammfunktion
Stammfunktion < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 17:38 So 23.12.2007
Autor: funktionentheorie

Hallo,

ich habe eine Frage über die Stammfunktionen von komplexen Funktionen.

Soweit ich verstanden habe, hat nicht jede stetige komplexe Funktion eine Stammfunktion. Man braucht also eine zusätzliche Forderung und zwar Holomorphie.

Hat jede holomorphe  Funktion eine Stammfunktion bzw. ist die Holomorphie ausreichend,damit eine komplexe Funktion eine Stammfunktion besizt?Gibt es andere Forderungen und welche?

Gilt auch die Umkehrung,dass jede Funktion in C, die eine Stammfunktion hat, holomorph ist?

Danke im voraus!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:44 So 23.12.2007
Autor: rainerS

Hallo!

> Soweit ich verstanden habe, hat nicht jede stetige komplexe
> Funktion eine Stammfunktion. Man braucht also eine
> zusätzliche Forderung und zwar Holomorphie.
>
> Hat jede holomorphe  Funktion eine Stammfunktion bzw. ist
> die Holomorphie ausreichend,damit eine komplexe Funktion
> eine Stammfunktion besizt?Gibt es andere Forderungen und
> welche?

Jede holomorphe Funktion hat eine lokale Stammfunktion, das heisst eine Stammfunktion in einer gewissen Umgebung. Die Umkehrung gilt ebenso.

Ich vermute, dass du nach der globalen Stammfunktion fragst. Dazu muss das Gebiet, in dem die Funktion holomorph ist, einfach zusammenhängend sein.

Beispiel: Die Funktion [mm]f(z)=\bruch{1}{z}[/mm] ist überall holomorph außer im Nullpunkt. Daher hat f(z) in jedem Punkt [mm]z\in\IC\backslash \{0\}[/mm] eine lokale Stammfunktion. Es gibt aber keine globale Stammfunktion in [mm]\IC\backslash \{0\}[/mm], denn dieses Gebiet ist nicht einfach zusammenhängend. Andererseits existiert in jeder offenen Kreisscheibe in [mm]\IC[/mm], die den Nullpunkt nicht enthält, eine globale Stammfunktion von f(z).

Viele Grüße
   Rainer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de