www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Stammfunktion
Stammfunktion < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion: Exponentialfunktion
Status: (Frage) beantwortet Status 
Datum: 14:09 Do 01.04.2010
Autor: PeterSteiner

Hallo ich tue mir mal wieder schwer :-(

habe folgende Funktion und möchte die Stammfunktion haben:

[mm] f(x)=\bruch{1}{2}e^{2x}-e^x [/mm]

so nun mal meine Ansätze:
Ich weiss von der e funktion das [mm] e^x [/mm] die Stammfunktion von [mm] e^x [/mm] ist das selbe gilt für [mm] e^{2x}=e^{2x} [/mm]

jetzt habe ich aber eine Konstante vor meiner e-funktion in diesem Fall [mm] \bruch{1}{2} [/mm]

Normalerweise gilt ja Z:B    3 Intigriert ist 3x    oder 3x Integriert ist [mm] \bruch{1}{2}*3x^2 [/mm] also [mm] \bruch{3}{2}x^2 [/mm]

Wenn ich dass jetzt auf meine gegeben funktion Übertrage sähe das so aus:
[mm] \bruch{1}{2}*\bruch{1}{2}e^{2x}-e^x [/mm]     was ich mich jetzt nur Frage ist, Normalerweise müsste ich bei der x Funktion im Exponenten ja addieren es wird aber nicht gemacht warum oder bin ich komplett auf dem Holzweg?Ich komme auf die [mm] \bruch{1}{2} [/mm] weil ich die 2x aus dem Exponenten zum Kehrbruch umgewandelt habe.

        
Bezug
Stammfunktion: Typo
Status: (Antwort) fertig Status 
Datum: 14:20 Do 01.04.2010
Autor: karma

Hallo und guten Tag,

> [mm]f(x)=\bruch{1}{2}e^{2x}-e^x[/mm]
>  
> so nun mal meine Ansätze:
>  Ich weiss von der e funktion das [mm]e^x[/mm] die Stammfunktion von
> [mm]e^x[/mm] ist das selbe gilt für [mm]e^{2x}=e^{2x}[/mm]

Ich möchte es nicht spannend machen:
[mm] $e^{2x}$ [/mm] ist nicht die Stammfunfktion von [mm] $e^{2x}$ [/mm] .

Die Ableitung von [mm] $e^{2x}$ [/mm] ist (Stichwort Kettenregel) [mm] $2\* e^{2x}$; [/mm]
die Ableitung von [mm] $\frac{1}{2}\* e^{2x}$ [/mm] ist [mm] $e^{2x}$, [/mm]
mit anderen Worten:
[mm] $(\frac{1}{2}\* e^{2x})^{'}=e^{2x}$. [/mm]

Damit ist [mm] $\frac{1}{2}\*\frac{1}{2}\*e^{2x}$ [/mm] die Stammfunktion von [mm] $\frac{1}{2}\*e^{2x}$, [/mm]
so,
wie du es vorgemacht hast.

Einverstanden?
  
Schönen Gruß
Karsten

Bezug
                
Bezug
Stammfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:10 Do 01.04.2010
Autor: PeterSteiner

Danke, die Überlegeung, dass die Ableitung wieder meine Ausgangfunktion geben muss habe ich nicht angestellt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de