Stammfunktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Hallo Leute,
aufgrund Krankheit hab ich letzte Woche gefehlt. Und nun hab ich noch eine Doppelstd bis zur Klausur und da ich nunmal keine große Leuchte in Mathe bin, wäre es ganz lieb wenn ihr mir n paar Tipps zu ner Aufgabe geben könntet.
Also:
Gegeben ist die Funktion f mit [mm] f(x)=x^2-x
[/mm]
a) welche Stammfunktion F von f nimmt an der Stelle -2 den Funktionswert 10 an? Welche Steigung hat F an der Stelle -2
nun ich dacht mir ich bilde erstmal F(x) von f(x)
[mm] F(x)=1/3x^3 -1/2x^2 [/mm] +c
und nun setze ich für x -2 ein und löse nach 10 auf
F(-2)=1/3 * [mm] (-2)^3 [/mm] -1/2 [mm] *(-2)^2 [/mm] +c =10
ich bekomme c=14 2/3 raus
also wäre die Stammfunktion
F(x)= [mm] 1/3x^3 [/mm] - [mm] 1/2x^2 [/mm] +14 2/3
so nun die Steigung im Punkt -2
f(x)=mx+b wobei m die Steigung ist.
Kann es sein, dass ich bei der Stammfunktion für x -2 einsetzen muss und einfach die 1/3 und 1/2weglassen muss und anschließend das Ergebnis nehmen?
[mm] (-2)^3-(-2)^2+14 [/mm] 2/3= 2 2/3
also 2 2/3 wären dann bei mir die Steigung.
b) Welche Stammfunktion G von f (Anm. ich nehme jetzt an, dass ich die Funktion aus dem Aufgabenteil a weiterbenutzen muss) hat einen Graphen, dessen Wendepunkt die y-Koordinate 2 hat?
also G(x)= [mm] 1/3x^3 [/mm] - [mm] 1/2x^2 [/mm] +c ist gesucht
dazu ist f(x)= [mm] x^2 [/mm] - x die Ableitung
und die zweite Ableitung wäre 2x-1
die zweite Ableitung braucht man in der Regel um eine Wendestelle herauszubekommen
soll ich jetzt die zweite Ableitung nach 2 auflösen oder 2 für x einsetzen. Die Ableitung sollte doch eigentlich Null ergeben oder?
also wenn ich die Ableitung nach 2 auflöse bekomme ich x=1 heraus und wenn ich 1 dann einsetze bekomme ich auch Null raus. Ist die Wendestelle also 1/2 ??
und eigentlich bräuchte ich ja auch die Stammfunktion und derzeit hab ich keine Ahnung wie ich dort hinkomme.
Wäre schön wenn mir wer weiterhelfen könnte.
lg
Sumpfhuhn
|
|
|
|
Hi, Sumpfhuhn,
> Also:
> Gegeben ist die Funktion f mit [mm]f(x)=x^2-x[/mm]
>
> a) welche Stammfunktion F von f nimmt an der Stelle -2 den
> Funktionswert 10 an? Welche Steigung hat F an der Stelle
> -2
>
> nun ich dacht mir ich bilde erstmal F(x) von f(x)
> [mm]F(x)=1/3x^3 -1/2x^2[/mm] +c
>
> und nun setze ich für x -2 ein und löse nach 10 auf
Du "löst es nicht nach 10 auf", sondern Du SETZT ES GLEICH 10 (!!!)
> F(-2)=1/3 * [mm](-2)^3[/mm] -1/2 [mm]*(-2)^2[/mm] +c =10
>
> ich bekomme c=14 2/3 raus
> also wäre die Stammfunktion
> F(x)= [mm]1/3x^3[/mm] - [mm]1/2x^2[/mm] +14 2/3
Das stimmt schon mal !!
> so nun die Steigung im Punkt -2
Nicht "im Punkt" sondern "an der Stelle" x=-2: Ein "Punkt" hat immer zwei Koordinaten, z.B. P(-2; [mm] 14\bruch{2}{3})!!
[/mm]
> f(x)=mx+b wobei m die Steigung ist.
Das ist der Ansatz für die Gleichung der Tangente.
Die brauchst Du aber nicht, denn:
Du sollst ja nur die "Steigung" ausrechnen, also: F'(-2).
Nun ist aber ja F'(x) = f(x) und daher: F'(-2) = f(-2) = [mm] (-2)^{2} [/mm] - (-2) = 6
> b) Welche Stammfunktion G von f (Anm. ich nehme jetzt an,
> dass ich die Funktion aus dem Aufgabenteil a weiterbenutzen
> muss) hat einen Graphen, dessen Wendepunkt die y-Koordinate
> 2 hat?
>
> also G(x)= [mm]1/3x^3[/mm] - [mm]1/2x^2[/mm] +c ist gesucht
> dazu ist f(x)= [mm]x^2[/mm] - x die Ableitung
> und die zweite Ableitung wäre 2x-1
Richtig!
> die zweite Ableitung braucht man in der Regel um eine
> Wendestelle herauszubekommen
>
> soll ich jetzt die zweite Ableitung nach 2 auflösen oder 2
> für x einsetzen.
Weder/noch: Die y(!!)-Koordinate des WP soll doch 2 sein, nicht die x-Koordinate!
> Die Ableitung sollte doch eigentlich Null
> ergeben oder?
Eben! Also: 2x - 1 = 0 und damit: x=0,5
>
> also wenn ich die Ableitung nach 2 auflöse bekomme ich x=1
> heraus und wenn ich 1 dann einsetze bekomme ich auch Null
> raus.
Hä? Wie löst Du was nach 2 auf und wo setzt Du x=1 ein?
Ich schätze, das kannst Du vergessen!
> Ist die Wendestelle also 1/2 ??
Ja! Die Wendestelle IST x=0,5 und nun musst Du G(0,5) = 2 setzen, um c zu bestimmen:
G(0,5) = [mm] \bruch{1}{3}*(\bruch{1}{2})^{3} [/mm] - [mm] \bruch{1}{2}*(\bruch{1}{2})^{2} [/mm] + c = 2
Daraus kriegst Du: c = [mm] \bruch{25}{12}
[/mm]
(Ohne Garantie für Rechenfehler!)
mfG!
Zwerglein
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:52 So 18.09.2005 | Autor: | Sumpfhuhn |
das mit Punkt und Stelle, wie gleichsetzen statt auflösen, werd ich mir merken
ich wünsche eine gute Nacht :)
lg Sumpfhuhn
|
|
|
|