www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Stammfunktion berechnen
Stammfunktion berechnen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:23 Do 13.03.2008
Autor: domenigge135

Hallo zusammen. Ich habe leider mal eine dringende Frage.

Aufgabe lautet: Bestimmen Sie die Stammfunktion folgender Funktion:
[mm] \bruch{6x-8}{x^2-4x+4} [/mm]

Ansatz: Ich würde nun die Partialbruchzerlegung durchführen. Hierfür erhalte ich: [mm] \bruch{6x-8}{(x-2)^2}=\bruch{A}{x-2}+\bruch{B}{(x-2)^2} [/mm]

[mm] \Rightarrow 6x-8=A(x-2)^2+B(x-2) [/mm]

Ich erkenne allerdings nun schon, dass mich das gnaze wohl in Schwierigkeiten bringt. Entweder habe ich irgendwo einen Fehler gemacht, oder die Partialbruchzerlegung ist garnicht angebracht. Welche Lösungsansätze habt ihr denn noch so???





        
Bezug
Stammfunktion berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:33 Do 13.03.2008
Autor: MathePower

Hallo domenigge135,

> Hallo zusammen. Ich habe leider mal eine dringende Frage.
>  
> Aufgabe lautet: Bestimmen Sie die Stammfunktion folgender
> Funktion:
>  [mm]\bruch{6x-8}{x^2-4x+4}[/mm]
>  
> Ansatz: Ich würde nun die Partialbruchzerlegung
> durchführen. Hierfür erhalte ich:
> [mm]\bruch{6x-8}{(x-2)^2}=\bruch{A}{x-2}+\bruch{B}{(x-2)^2}[/mm]
>  
> [mm]\Rightarrow 6x-8=A(x-2)^2+B(x-2)[/mm]

Richtig heißt es: [mm]\Rightarrow 6x-8=A*\left(x-2\right)+B[/mm]

Nun können A und B bestimmt werden.

>  
> Ich erkenne allerdings nun schon, dass mich das gnaze wohl
> in Schwierigkeiten bringt. Entweder habe ich irgendwo einen
> Fehler gemacht, oder die Partialbruchzerlegung ist garnicht
> angebracht. Welche Lösungsansätze habt ihr denn noch so???
>  

Gruß
MathePower

Bezug
                
Bezug
Stammfunktion berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:38 Do 13.03.2008
Autor: domenigge135

Aha...

Okay also steht ja dort:
[mm] \bruch{6x-8}{(x-2)^2}=\bruch{A}{(x-2)}+\bruch{B}{(x-2)^2} [/mm]
Das multipliziere ich nun mit [mm] (x-2)(x-2)^2 [/mm] wenn ich das richtig verstehe. Aber wie führt mich das nun auf dein Ergebnis??? Könntest du mir die Rechnung eventuell vormachen??? Wäre wirklich net.

Bezug
                        
Bezug
Stammfunktion berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:42 Do 13.03.2008
Autor: domenigge135

Nein Schwachsinn...

Ich multipliziere natürlich nur mit [mm] (x-2)^2. [/mm]

Sorry... :-)

Bezug
                        
Bezug
Stammfunktion berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:49 Do 13.03.2008
Autor: MathePower

Hallo domenigge135,

> Aha...
>  
> Okay also steht ja dort:
>  [mm]\bruch{6x-8}{(x-2)^2}=\bruch{A}{(x-2)}+\bruch{B}{(x-2)^2}[/mm]
>  Das multiplizi ere ich nun mit [mm](x-2)(x-2)^2[/mm] wenn ich das
> richtig verstehe. Aber wie führt mich das nun auf dein
> Ergebnis??? Könntest du mir die Rechnung eventuell
> vormachen??? Wäre wirklich net.

Zunächst einmal ist mit [mm]\left(x-2\right)^2[/mm] durch zu multiplizieren:

[mm]\bruch{6x-8}{(x-2)^2}*\left(x-2\right)^2=\bruch{A}{(x-2)}*\left(x-2\right)^2+\bruch{B}{(x-2)^2}*\left(x-2\right)^2[/mm]

[mm]\gdw \bruch{\left(6x-8\right)*\left(x-2\right)^2}{(x-2)^2}=\bruch{A*\left(x-2\right)^2}{(x-2)}+\bruch{B*\left(x-2\right)^2}{(x-2)^2}[/mm]

[mm]\gdw 6x-8 = A*\left(x-2\right) + B[/mm]

Gruß
MathePower

Bezug
                                
Bezug
Stammfunktion berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:52 Do 13.03.2008
Autor: domenigge135

Ja hatte ich dann auch noch gemerkt. Mein Fehler. Eine Frage hätte ich allerdings noch. Meine erste Idee wäre gewesen, dass ganz mittels Substitution zu integrieren. Warum sagt in einem solchen Fall die Partialbruchzerlegung eher zu??? Und wann muss ich erkennen, was besser ist zum Anwenden??? Also wann Substitution, wann Partialbruchzerlegeung??? Partialbruchzerlegung nur dann, wenn Nennergrad größer Zählergrad???

Bezug
                                        
Bezug
Stammfunktion berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:04 Do 13.03.2008
Autor: Steffi21

Hallo,

[mm] \bruch{6x-8}{(x-2)^{2}}=\bruch{6}{x-2}+\bruch{4}{(x-2)^{2}} [/mm]

jetzt hast du einfach zu lösende Integrale, du benötigst hier keine Substitution, das ist ja der Vorteil der Partialbruchzerlegung, im Zähler steht ein Skalar, keine Funktion

Steffi



Bezug
                                        
Bezug
Stammfunktion berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:31 Do 13.03.2008
Autor: angela.h.b.


>  Meine erste Idee wäre
> gewesen, dass ganz mittels Substitution zu integrieren.
> Warum sagt in einem solchen Fall die Partialbruchzerlegung
> eher zu???

Hallo,

lös' das Integral doch mal mit Substitution.

Wenn Du den Nenner substituierst und alles richtig machst, müßtest Du auch zum Ziel kommen.
Du Du ohne Grenzen rechnest, mußt Du am Ende noch resubstituieren.
Wahrscheinlich dauert es länger als die PBZ.

Wenn alles gut läuft, bekommst Du (bis auf eine eventuel addierte Konstante) beide Male dasselbe heraus.

> Und wann muss ich erkennen, was besser ist zum
> Anwenden???

Solche Aufgaben wie die vorliegende, gebrochen rationale Funktionen, bei denen der Zählergrad kleiner als der Nennergrad ist, löst man oft mit Partialbruchzerlegung, es sei denn, man sieht sofort, daß der Zähler die Ableitung des Nenners ist.

> Also wann Substitution, wann
> Partialbruchzerlegeung???

Immer so, wie's gut klappt.

Allgemeine Kochrezepte sind da schwer zu geben, je mehr man übt, desto besser weiß man schnell, was zu tun ist.
Aber Irrwege gehören dazu - jedenfalls für mich, die "im Leben" nicht viel zu integrieren hat.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de