www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Stammfunktion beweisen
Stammfunktion beweisen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:27 Sa 01.03.2008
Autor: kleine_Frau

Aufgabe
Zeigen Sie, dass durch F(t) = -0,2*(t²+20t+200)*e^(-0,1t) eine Stammfunktion von f(t) = 0,02t²*e^(-0,1t)  gegeben ist.

Ich weiß, dass der Ansatz folgender sein muss:
F'(t) = f(t)

Im Regelfall kann ich mit Ketten- und Produktregel auch gut umgehen. Aber dieses Mal stehe ich irgendwie auf dem Schlauch.

Ich habe erstmal folgenden Schritt gemacht:
    F(t) = -0,2 * (t²+20t+200) * e^(-0,1t)
<=> F(t) = -0,2e^(-0,1t) * (t²+20t+200)
Dann habe ich nur zwei Faktoren. Das ist ja dann einfacher für die Produktregel.

Aber ich komm einfach nie auf f(t) am Ende :-(

        
Bezug
Stammfunktion beweisen: mehr Zwischenschritte, bitte!
Status: (Antwort) fertig Status 
Datum: 13:31 Sa 01.03.2008
Autor: Loddar

Hallo kleine Frau!


Bitte poste doch auch etwas mehr Zwischenschritte, damit wir eventuelle Fehler finden können.


Es ist auch oft hilfreich, sich die Teilableitungen von [mm] $-0.2*e^{-0.1*t}$ [/mm] bzw. [mm] $t^2+20*t+200$ [/mm] separat aufzuschreiben.

Am Ende Deiner Ablaitung solltest Du dann [mm] $-0.2*e^{-0.1*t}$ [/mm] wieder ausklammern.


Gruß
Loddar


Bezug
                
Bezug
Stammfunktion beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:42 Sa 01.03.2008
Autor: kleine_Frau

    [mm] -0,2e^{-0,1t}*(t²+20t+200) [/mm]
<=> [mm] -0,2e^{-0,1t}*(-0,1)*(t²+20t+200) -0,2e^{0,1t}*(2t+20) [/mm]
<=> [mm] 0,02e^{-0,1t} [/mm] * (t²+20t+200)  [mm] -0,2e^{-0,1t}*(2t+200) [/mm]

Bezug
                        
Bezug
Stammfunktion beweisen: nun ausklammern
Status: (Antwort) fertig Status 
Datum: 13:51 Sa 01.03.2008
Autor: Loddar

Hallo kleine Frau!


Das stimmt soweit. Allerdings hier bitte keine [mm] $\gdw$ [/mm] verwenden, denn das sind hier keine Gleichungsumformungen (Äquivalenzumformungen).


Und nun - wie oben angedeutet - den Term [mm] $0.2*e^{-0.1*t}$ [/mm] ausklammern und zusammenfassen.


Gruß
Loddar


Bezug
                                
Bezug
Stammfunktion beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:21 Sa 01.03.2008
Autor: kleine_Frau

Muss ich dafür vorher die Klammern aus-multiplizieren?

Bezug
                                        
Bezug
Stammfunktion beweisen: doppelte Arbeit
Status: (Antwort) fertig Status 
Datum: 14:40 Sa 01.03.2008
Autor: Loddar

Hallo kleine Frau!


Nein, das wäre ja genau die falsche Richtung und würde doppelte Arbeit bedeuten.


Gruß
Loddar


Bezug
                                                
Bezug
Stammfunktion beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:15 Sa 01.03.2008
Autor: kleine_Frau

Wie soll denn das gehen? Da sind ja noch die Klammern mit dem t drin !
Könntest du mir diesen Schritt mal machen?

LG


Bezug
                                                        
Bezug
Stammfunktion beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:23 Sa 01.03.2008
Autor: XPatrickX

Hey, also du hast ja:
[mm] $0,02e^{-0,1t} [/mm] * (t²+20t+200)  [mm] -0,2e^{-0,1t}*(20t+200)$ [/mm]

(Du hast übrigens ganz am Ende bei der 20 eine Null vergessen)

Klammere also nun den Teil mit den [mm] 0,2e^{-0,1t} [/mm]  aus:


[mm] $0,02e^{-0,1t} [/mm] ( 1* (t²+20t+200)  - 1 *(20t+200))$
[mm] $=0,02e^{-0,1t} [/mm] ( t²+20t+200-20t-200)$

Gruß Patrick

Bezug
                                                                
Bezug
Stammfunktion beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:06 Sa 01.03.2008
Autor: kleine_Frau

Eine Null vergessen? Wieso
Ich muss folgendes ableiten: t²+20t+200
Da kommt doch raus:
2t+20

Bezug
                                                                        
Bezug
Stammfunktion beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:10 Sa 01.03.2008
Autor: kleine_Frau

Außerdem:
ich habe einmal [mm] 0,02e^{-0,1t} [/mm]   und einmal [mm] 0,2e^{-0,1t} [/mm]
Wieso hast du dann beides einmal ausgeklammert. Eins muss ich doch dann 10-Mal  in der Klammer haben

Bezug
                                                                
Bezug
Stammfunktion beweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:18 Sa 01.03.2008
Autor: kleine_Frau

Ok. ich habs jetzt geschafft. Hab alle Fehler gefunden und verstanden.
Danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de